965 resultados para Natural language processing (Computer science) -- TFC
Resumo:
Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.
Resumo:
Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.
Resumo:
Image denoising continues to be an active research topic. Although state-of-the-art denoising methods are numerically impressive and approch theoretical limits, they suffer from visible artifacts.While they produce acceptable results for natural images, human eyes are less forgiving when viewing synthetic images. At the same time, current methods are becoming more complex, making analysis, and implementation difficult. We propose image denoising as a simple physical process, which progressively reduces noise by deterministic annealing. The results of our implementation are numerically and visually excellent. We further demonstrate that our method is particularly suited for synthetic images. Finally, we offer a new perspective on image denoising using robust estimators.
Resumo:
Software corpora facilitate reproducibility of analyses, however, static analysis for an entire corpus still requires considerable effort, often duplicated unnecessarily by multiple users. Moreover, most corpora are designed for single languages increasing the effort for cross-language analysis. To address these aspects we propose Pangea, an infrastructure allowing fast development of static analyses on multi-language corpora. Pangea uses language-independent meta-models stored as object model snapshots that can be directly loaded into memory and queried without any parsing overhead. To reduce the effort of performing static analyses, Pangea provides out-of-the box support for: creating and refining analyses in a dedicated environment, deploying an analysis on an entire corpus, using a runner that supports parallel execution, and exporting results in various formats. In this tool demonstration we introduce Pangea and provide several usage scenarios that illustrate how it reduces the cost of analysis.
Resumo:
The domain of context-free languages has been extensively explored and there exist numerous techniques for parsing (all or a subset of) context-free languages. Unfortunately, some programming languages are not context-free. Using standard context-free parsing techniques to parse a context-sensitive programming language poses a considerable challenge. Im- plementors of programming language parsers have adopted various techniques, such as hand-written parsers, special lex- ers, or post-processing of an ambiguous parser output to deal with that challenge. In this paper we suggest a simple extension of a top-down parser with contextual information. Contrary to the tradi- tional approach that uses only the input stream as an input to a parsing function, we use a parsing context that provides ac- cess to a stream and possibly to other context-sensitive infor- mation. At a same time we keep the context-free formalism so a grammar definition stays simple without mind-blowing context-sensitive rules. We show that our approach can be used for various purposes such as indent-sensitive parsing, a high-precision island parsing or XML (with arbitrary el- ement names) parsing. We demonstrate our solution with PetitParser, a parsing-expression grammar based, top-down, parser combinator framework written in Smalltalk.
Resumo:
This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.
Resumo:
This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.
Resumo:
This article presents a multi-agent expert system (SMAF) , that allows the input of incidents which occur in different elements of the telecommunications area. SMAF interacts with experts and general users, and each agent with all the agents? community, recording the incidents and their solutions in a knowledge base, without the analysis of their causes. The incidents are expressed using keywords taken from natural language (originally Spanish) and their main concepts are recorded with their severities as the users express them. Then, there is a search of the best solution for each incident, being helped by a human operator using a distancenotions between them.
Resumo:
In this paper the hardware implementation of an inner hair cell model is presented. Main features of the design are the use of Meddis’ transduction structure and the methodology for Design with Reusability. Which allows future migration to new hardware and design refinements for speech processing and custom-made hearing aids
Resumo:
A new formalism, called Hiord, for defining type-free higherorder logic programming languages with predicate abstraction is introduced. A model theory, based on partial combinatory algebras, is presented, with respect to which the formalism is shown sound. A programming language built on a subset of Hiord, and its implementation are discussed. A new proposal for defining modules in this framework is considered, along with several examples.
Resumo:
This report addresses speculative parallelism (the assignment of spare processing resources to tasks which are not known to be strictly required for the successful completion of a computation) at the user and application level. At this level, the execution of a program is seen as a (dynamic) tree —a graph, in general. A solution for a problem is a traversal of this graph from the initial state to a node known to be the answer. Speculative parallelism then represents the assignment of resources to múltiple branches of this graph even if they are not positively known to be on the path to a solution. In highly non-deterministic programs the branching factor can be very high and a naive assignment will very soon use up all the resources. This report presents work assignment strategies other than the usual depth-first and breadth-first. Instead, best-first strategies are used. Since their definition is application-dependent, the application language contains primitives that allow the user (or application programmer) to a) indícate when intelligent OR-parallelism should be used; b) provide the functions that define "best," and c) indícate when to use them. An abstract architecture enables those primitives to perform the search in a "speculative" way, using several processors, synchronizing them, killing the siblings of the path leading to the answer, etc. The user is freed from worrying about these interactions. Several search strategies are proposed and their implementation issues are addressed. "Armageddon," a global pruning method, is introduced, together with both a software and a hardware implementation for it. The concepts exposed are applicable to áreas of Artificial Intelligence such as extensive expert systems, planning, game playing, and in general to large search problems. The proposed strategies, although showing promise, have not been evaluated by simulation or experimentation.
Resumo:
Ciao Prolog incorporates a module system which allows sepárate compilation and sensible creation of standalone executables. We describe some of the main aspects of the Ciao modular compiler, ciaoc, which takes advantage of the characteristics of the Ciao Prolog module system to automatically perform sepárate and incremental compilation and efficiently build small, standalone executables with competitive run-time performance, ciaoc can also detect statically a larger number of programming errors. We also present a generic code processing library for handling modular programs, which provides an important part of the functionality of ciaoc. This library allows the development of program analysis and transformation tools in a way that is to some extent orthogonal to the details of module system design, and has been used in the implementation of ciaoc and other Ciao system tools. We also describe the different types of executables which can be generated by the Ciao compiler, which offer different tradeoffs between executable size, startup time, and portability, depending, among other factors, on the linking regime used (static, dynamic, lazy, etc.). Finally, we provide experimental data which illustrate these tradeoffs.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.