993 resultados para Natural convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of Benard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The velocity fields in the vertical cross-section are obtained by PIV. Flow patterns and/or temperature distributions on the horizontal interface are displayed by using thermal color liquid crystal (TLC), and the velocity distributions on the interface were also obtained with the help of the serial particle image of TCL. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers, and the convection styles are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rayleigh–Marangoni–Bénard convective instability (R–M–B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen’s experimental observation with the previous linear stability analysis results of Renardy et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear instability analysis of the present paper shows that the thermocapillary convection in a half floating zone of larger Prandtl number has a steady instability mode w(i) = 0 and m = 1 for a fat liquid bridge V = 1.2 with small geometrical aspect ratio A = 0.6. This conclusion is different from the usual idea of hydrothermal instability, and implies that the instability of the system may excite a steady and axial asymmetric state before the onset of oscillation in the ease of large Prandtl number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente estudio se realizó en el ingenio Benjamín Zeledón con el objetivo de determinar los niveles de daño causados por Diatraea spp. y la incidencia del parasitismo natural para su control durante el periodo julio-diciembre de 1995. Evaluándose los parámetros: infestación, intensidad de infestación e índice de infestación, así como los niveles del parasitismo natural de Diatraea spp. en diversas variedades de caña en una área que representa el 16.30% del área total productiva del Ingenio. Determinándose una infestación promedio de 5.35%, una intensidad de infestación promedio de 14.39% y un índice de infestación promedio de 0.85, el cual es considerado internacionalmente como bajo. La variedades L 68-40, J 60-5, L 68-90 y la mezcla de diversas variedades fueron las más afectadas por Diatraea spp. Determinándose en estas variedades índices de infestación superiores al promedio general (0.85)y que corresponden a 1.26, 1.14, 1.13 y 1.09 respectivamente. Sin embargo, SP 70-4790, MEX. 53-4-73 y MEX. 68-P-23 fueron las variedades menos afectadas con 0.51, 0.23 y 0.24 de índice de infestación respectivamente. Por otro lado, se determinó un bajo nivel de parasitismo natural que se concentró sólo en el trimestre julio-septiembre con 19, 21 y 251% de parasitismo natural a partir de 58,19 y 4 larvas colectadas durante estos meses respectivamente. Identificándose a los parasitoides larvales: Billaea claripalpis Wulp, Cotesia flavipes Camerón y Apanteles diatraeae Muesebeck. Aunque no se pudo determinar la incidencia de los parasitoides ovifagos se determinó la presencia de Telenomus sp. y una especie de la familia Trichogrammatidae en los campos muestreados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boiloff gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural ventilation of a well-mixed, pre-heated room with a point source of heating, and openings at the base and roof is investigated. The transient draining associated with the room being warmer than the exterior combined with the convective ow produced by the point source of heat leads to a fascinating series of transient ow regimes as the system evolves to the two-layer steady-state regime described by Linden, Lane-Ser_ and Smeed [1]. As the room begins to ventilate, a turbulent plume rises from the point source of heat to the ceiling, and typically forms a deepening layer of hot air. However, with a weak heat source, then at some point the ascending plume will intrude beneath the layer of original uid. Otherwise, the ascending plume always reaches the top of the room as the system evolves to a steady state. We develop a simpli_ed model of the transient evolution and test this with some new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A remarkably increased coagulation rate for 2-mu m PS spheres was previously reported for a perikinetic coagulation experiment performed under microgravity conditions (1998, R. Folkersma, A. J. G. van Diemen, and H. N. Stein, J. Colloid Interface Sci. 206, 482); from this experiment, it was assumed that the leading factor slowing the coagulation process under normal gravitation was free convection due to gravity (1998, R. Folkersma, and H. N. Stein, J. Colloid Interface Sci. 206, 494). To test the influence of free convection as a single-effect factor on the coagulation process, a ground-based experiment was constructed. The coagulation rate of 2-mu m PS spheres dispersed in water was determined by measuring the turbidity of the dispersion solution while convection-driven flows in the solution were checked with a visual magnification system. We found that it was possible to cease free convection-driven particle flows on the ground, as long as the experiments were carefully operated. The strength of convection was controlled by changing the temperature gradient applied to the sample cell. By monitoring both the coagulation rate and convection-driven flows simultaneously, our experiments showed that weak free convection (maximum speed <150 mu m/s) actually has negligible effects on the coagulation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of an enclosed space in which vent A, located at height hA above the floor, is connected to a vertical stack with a termination at height H, while the second vent, B, at height hB above the floor, connects directly to the exterior. We first examine the flow regimes which develop with a distributed source of heating at the base of the space. If hBhB>hA, then two different flow regimes may develop. Either (i) there is inflow through vent B and outflow through vent A, or (ii) the flow reverses, with inflow down the stack into vent A and outflow through vent B. With inflow through vent A, the internal temperature and ventilation rate depend on the relative height of the two vents, A and B, while with inflow through vent B, they depend on the height of vent B relative to the height of the termination of the stack H. With a point source of heating, a similar transition occurs, with a unique flow regime when vent B is lower than vent A, and two possible regimes with vent B higher than vent A. In general, with a point source of buoyancy, each steady state is characterised by a two-layer density stratification. Depending on the relative heights of the two vents, in the case of outflow through vent A connected to the stack, the interface between these layers may lie above, at the same level as or below vent A, leading to discharge of either pure upper layer, a mixture of upper and lower layer, or pure lower layer fluid. In the case of inflow through vent A connected to the stack, the interface always lies below the outflow vent B. Also, in this case, if the inflow vent A lies above the interface, then the lower layer becomes of intermediate density between the upper layer and the external fluid, whereas if the interface lies above the inflow vent A, then the lower layer is composed purely of external fluid. We develop expressions to predict the transitions between these flow regimes, in terms of the heights and areas of the two vents and the stack, and we successfully test these with new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of laboratory analogue modelling of air flow in a naturally ventilated shopping mall is reviewed in this paper. A detailed study of the ventilation was undertaken to establish the principles and to explore how natural ventilation might interact with a localised mechanical ventilation system designed to enhance the cooling of a high density food court area. The case study is used to show how the combination of laboratory modelling and simplified mathematical modelling enables one to rapidly identify the various flow regimes which can occur, to quantify the resultant flows and mean temperatures and to thereby develop appropriate ventilation strategies for the different external conditions which occur through the year.