987 resultados para NUCLEAR MAGNETIC-RELAXATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b- polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore£ the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b- POEOMA-b- PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to discover phytochemicals that are potentially bioactive against Phytophthora cinnamomi, (a soil-borne plant pathogen) a metabolite profiling protocol for investigation of metabolic changes in Lupinus angustifolius L. plant roots in response to pathogen challenge has been established. Analysis of the metabolic profiles from healthy and P. cinnamomi-inoculated root tissue with high resolution mass spectrometry and nuclear magnetic resonance spectroscopy confirmed that although susceptible, L. angustifolius upregulated a defence associated genistein and 2′-hydroxygenistein-based isoflavonoid and a soyasapogenol saponin at 12h post inoculation which increased in concentration at 72h post inoculation. In contrast to the typical susceptible interaction, the application of a phosphorous-based treatment to L. angustifolius foliage 48h before P. cinnamomi challenge negated the ability of the pathogen to colonise the root tissue and cause disease. Importantly, although the root profiles of water-treated and phosphite-treated plants post pathogen inoculation contained the same secondary metabolites, concentration variations were observed. Accumulation of secondary metabolites within the P. cinnamomi-inoculated plants confirms that pathogen ingress of the root interstitially occurs in phosphite-treated plants, confirming a direct mode of action against the pathogen upon breaching the root cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of μ-conotoxin KIIIA, which was predicted originally to have a [C1–C9,C2–C15,C4–C16] disulfide pattern based on homology with closely related μ-conotoxins. The two major isomers of synthetic μ-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a [C1–C15,C2–C9,C4–C16] disulfide connectivity, while the minor product adopts a [C1–C16,C2–C9,C4–C15] connectivity. Both of these peptides were potent blockers of NaV1.2 (Kd values of 5 and 230 nM, respectively). The solution structure for μ-KIIIA based on nuclear magnetic resonance data was recalculated with the [C1–C15,C2–C9,C4–C16] disulfide pattern; its structure was very similar to the μ-KIIIA structure calculated with the incorrect [C1–C9,C2–C15,C4–C16] disulfide pattern, with an α-helix spanning residues 7–12. In addition, the major folding isomers of μ-KIIIB, an N-terminally extended isoform of μ-KIIIA identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as μ-KIIIA, and both blocked NaV1.2 (Kd values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic μ-KIIIA and μ-KIIIB folded in vitro is 1–5/2–4/3–6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of μ-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail’s repertoire of active peptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of porous media to transmit fluids is commonly referred to as permeability. The concept of permeability is central for hydrocarbon recovery from petroleum reservoirs and for studies of groundwater flow in aquifers. Spatially resolved measurements of permeability are of great significance for fluid dynamics studies. A convenient concept of local Darcy’s law is suggested for parallel flow systems. The product of porosity and mean velocity images in the plane across the average flow direction is directly proportional to permeability. Single Point Ramped Imaging with T 1 Enhancement (SPRITE) permits reliable quantification of local fluid content and flow in porous media. It is particularly advantageous for reservoir rocks characterized by fast magnetic relaxation of a saturating fluid. Velocity encoding using the Cotts pulsed field gradient scheme improves the accuracy of measured flow parameters. The method is illustrated through measurements of 2D permeability maps in a capillary bundle, glass bead packs and composite sandstone samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The title compound (Cp*Sn)BPh 4 was obtained by the metathesis reaction of Cp*SnCl with NaBPh4and characterized by single crystal X-ray diffraction as well as solution and solid-state 119Sn nuclear magnetic resonance (NMR) spectroscopy. The coordination modes are best described as (ν 5-C5Me 5)Sn(μ-ν6-Ph) 2BPh2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis of molecular-level multiple-component composites are particularly challenging due to the lack of direct bonding among different components. In this study, molecular-level graphene oxide (GO)-polyacryl amide (PAM)-CeOx composites were successfully synthesized, using the simultaneous polymerization and crosslinking strategy. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) techniques confirmed that polyacryl amide (PAM) chains were successfully grafted onto the surface of GO. X-ray photoelectron spectroscopic (XPS) and X-ray diffraction (XRD) analyses further revealed the characteristic signals of cerium elements and CeO2 phase respectively. Scanning electron microscopy (SEM) showed that the surface morphology of the GO-PAM-CeOx composites was substantially thicker and rougher than those of the original GO. Further exploration of the reaction mechanism clearly demonstrate the existence of strong chelating interaction among PAM chains and Ce(IV) ions. In particular, the polymerization of acryl amide monomers and the crosslinking reaction between PAM and Ce(IV) or Ce(III) ions were realized simultaneously, leading to the final formation of molecular-level GO-PAM-CeOx composites. Moreover, the as-synthesized GO-PAM-CeOx composites were capable of effectively decomposing Rhodamine B under simulated sunlight, making it a potential candidate as a new photo catalyst. To sum up, this report demonstrates the potential utility of simultaneous polymerization and crosslinking method for the synthesis of other multiple-component composites at molecular-level.