887 resultados para NOXIOUS STIMULATION
Resumo:
Receptors activate adenylyl cyclases through the Gαs subunit. Previous studies from our laboratory have shown in certain cell types that express adenylyl cyclase 6 (AC6), heterologous desensitization included reduction of the capability of adenylyl cyclases to be stimulated by Gαs. Here we further analyze protein kinase A (PKA) effects on adenylyl cyclases. PKA treatment of recombinant AC6 in insect cell membranes results in a selective loss of stimulation by high (>10 nM) concentrations of Gαs. Similar treatment of AC1 or AC2 did not affect Gαs stimulation. Conversion of Ser-674 in AC6 to an Ala blocks PKA phosphorylation and PKA-mediated loss of Gαs stimulation. A peptide encoding the region 660–682 of AC6 blocks stimulation of AC6 and AC2 by high concentrations of Gαs. Substitution of Ser-674 to Asp in the peptide renders the peptide ineffective, indicating that the region 660–682 of AC6 is involved in regulation of signal transfer from Gαs. This region contains a conserved motif present in most adenylyl cyclases; however, the PKA phosphorylation site is unique to members of the AC6 family. These observations suggest a mechanism of how isoform selective regulatory diversity can be obtained within conserved regions involved in signal communication.
Resumo:
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ∼5-fold and Michaelis–Menten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ∼ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ∼ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ∼ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.
Resumo:
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.
Resumo:
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR–ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR–ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR–ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR–ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR–ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.
Resumo:
The intracellular pathogen Trypanosoma cruzi is the etiological agent of Chagas’ disease. We have isolated a full-length cDNA encoding uracil-DNA glycosylase (UDGase), a key enzyme involved in DNA repair, from this organism. The deduced protein sequence is highly conserved at the C-terminus of the molecule and shares key residues involved in binding or catalysis with most of the UDGases described so far, while the N-terminal part is highly variable. The gene is single copy and is located on a chromosome of ∼1.9 Mb. A His-tagged recombinant protein was overexpressed, purified and used to raise polyclonal antibodies. Western blot analysis revealed the existence of a single UDGase species in parasite extracts. Using a specific ethidium bromide fluorescence assay, recombinant T.cruzi UDGase was shown to specifically excise uracil from DNA. The addition of both Leishmania major AP endonuclease and exonuclease III, the major AP endonuclease from Escherichia coli, produces stimulation of UDGase activity. This activation is specific for AP endonuclease and suggests functional communication between the two enzymes.
Resumo:
The docking protein FRS2 is a major downstream effector that links fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein kinase signaling cascade. In this report, we demonstrate that FRS2 also plays a pivotal role in FGF-induced recruitment and activation of phosphatidylinositol 3-kinase (PI3-kinase). We demonstrate that tyrosine phosphorylation of FRS2α leads to Grb2-mediated complex formation with the docking protein Gab1 and its tyrosine phosphorylation, resulting in the recruitment and activation of PI3-kinase. Furthermore, Grb2 bound to tyrosine-phosphorylated FRS2 through its SH2 domain interacts primarily via its carboxyl-terminal SH3 domain with a proline-rich region in Gab1 and via its amino-terminal SH3 domain with the nucleotide exchange factor Sos1. Assembly of FRS2α:Grb2:Gab1 complex induced by FGF stimulation results in activation of PI3-kinase and downstream effector proteins such as the S/T kinase Akt, whose cellular localization and activity are regulated by products of PI3-kinase. These experiments reveal a unique mechanism for generation of signal diversity by growth factor-induced coordinated assembly of a multidocking protein complex that can activate the Ras/mitogen-activated protein kinase cascade to induce cell proliferation and differentiation, and PI3-kinase to activate a mediator of a cell survival pathway.
Resumo:
Reactivation of latent herpesviruses is a particular problem in immunocompromised individuals, such as AIDS patients, who lack effective CD4 T helper cell function. An important question is whether residual immune defenses can be mobilized to combat such opportunistic infections, in the absence of CD4 T cells. In the present study, we used a mouse model of opportunistic infection to determine whether stimulation via CD40 could substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Treatment with an agonistic antibody to CD40 was highly effective in preventing reactivation of latent murine gammaherpesvirus (MHV-68) in the lungs of CD4 T cell-deficient mice. CD8+ T cells were essential for this effect, whereas virus-specific serum antibody was undetectable and IFN-γ production was unchanged. This demonstration that immunostimulation via CD40 can replace CD4 T cell help in controlling latent virus in vivo has potential implications for the development of novel therapeutic agents to prevent viral reactivation in immunocompromised patients.
Resumo:
Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex (S1). Human brain-imaging studies do not consistently reveal pain-related activation of S1, and older studies of cortical lesions and cortical stimulation in humans did not uncover a clear role of S1 in the pain experience. Whereas studies from a number of laboratories show that S1 is activated during the presentation of noxious stimuli as well as in association with some pathological pain states, others do not report such activation. Several factors may contribute to the different results among studies. First, we have evidence demonstrating that S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and previous experience. Second, the precise somatotopic organization of S1 may lead to small focal activations, which are degraded by sulcal anatomical variability when averaging data across subjects. Third, the probable mixed excitatory and inhibitory effects of nociceptive input to S1 could be disparately represented in different experimental paradigms. Finally, statistical considerations are important in interpreting negative findings in S1. We conclude that, when these factors are taken into account, the bulk of the evidence now strongly supports a prominent and highly modulated role for S1 cortex in the sensory aspects of pain, including localization and discrimination of pain intensity.
Resumo:
Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 μm NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes, but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.
Resumo:
Plants exposed to repetitive touch or wind are generally shorter and stockier than sheltered plants. These mechanostimulus-induced developmental changes are termed thigmomorphogenesis and may confer resistance to subsequent stresses. An early response of Arabidopsis thaliana to touch or wind is the up-regulation of TCH (touch) gene expression. The signal transduction pathway that leads to mechanostimulus responses is not well defined. A role for ethylene has been proposed based on the observation that mechanostimulation of plants leads to ethylene evolution and exogenous ethylene leads to thigmomorphogenetic-like changes. To determine whether ethylene has a role in plant responses to mechanostimulation, we assessed the ability of two ethylene-insensitive mutants, etr1–3 and ein2–1, to undergo thigmomorphogenesis and TCH gene up-regulation of expression. The ethylene-insensitive mutants responded to wind similarly to the wild type, with a delay in flowering, decrease in inflorescence elongation rate, shorter mature primary inflorescences, more rosette paraclades, and appropriate TCH gene expression changes. Also, wild-type and mutant Arabidopsis responded to vibrational stimulation, with an increase in hypocotyl elongation and up-regulation of TCH gene expression. We conclude that the ETR1 and EIN2 protein functions are not required for the developmental and molecular responses to mechanical stimulation.
Resumo:
It was previously shown that a number of sulfhydryl [SH] group reagents (N-ethylmaleimide [NEM], iodoacetate, Ag+, HgCl2, etc.) can induce a marked, transitory stimulation of O2 uptake (QO2) in Egeria densa leaves, insensitive to CN− and salicylhydroxamic acid and inhibited by diphenylene iodonium and quinacrine. The phytotoxin fusicoccin (FC) also induces a marked increase in O2 consumption in E. densa leaves, apparently independent of the recognized stimulating action on the H+-ATPase. In this investigation we compared the FC-induced increase in O2 consumption with those induced by NEM and Ag+, and we tested for a possible interaction between FC and the two SH blockers in the activation of QO2. The results show (a) the different nature of the FC- and NEM- or Ag+-induced increases of QO2; (b) that FC counteracts the NEM- (and Ag+)-induced respiratory burst; and (c) that FC strongly reduces the damaging effects on plasma membrane permeability observed in E. densa leaves treated with the two SH reagents. Two alternative models of interpretation of the action of FC, in activating a CN−-sensitive respiratory pathway and in suppressing the SH blocker-induced respiratory burst, are proposed.
Resumo:
Rearrangements of the high mobility group protein I-C (HMGI-C) gene, consisting in the loss of the carboxyl-terminal tail, have been frequently detected in benign human tumors of mesenchymal origin. We have previously demonstrated that transgenic (TG) mice carrying a truncated HMGI-C construct (HMGI-C/T) exhibit a giant phenotype together with a predominantly abdominal/pelvic lipomatosis. Here, we report that HMGI-C/T TG mice develop natural killer (NK)-T/NK cell lymphomas starting from 12 months of age. We found an increased expression of IL-2 and IL-15 proteins and their receptors in these lymphomas, and we demonstrate that HMGI-C/T protein positively regulates their expression in vitro. Therefore, the HMGI-C/T-mediated chronic stimulation of the IL-2/IL-15 pathway could be responsible for the onset of NK-T/NK cell lymphomas in HMGI-C/T TG mice.
Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride.
Resumo:
When the human prostate cancer cell line, LNCaP 104-S, the growth of which is stimulated by physiological levels of androgen, is cultured in androgen-depleted medium for > 100 passages, the cells, now called LNCaP 104-R2, are proliferatively repressed by low concentrations of androgens. LNCaP 104-R2 cells formed tumors in castrated male athymic nude mice. Testosterone propionate (TP) treatment prevented LNCaP 104-R2 tumor growth and caused regression of established tumors in these mice. Such a tumor-suppressive effect was not observed with tumors derived from LNCaP 104-S cells or androgen receptor-negative human prostate cancer PC-3 cells. 5 alpha-Dihydrotestosterone, but not 5 beta-dihydrotestosterone, 17 beta-estradiol, or medroxyprogesterone acetate, also inhibited LNCaP 104-R2 tumor growth. Removal of TP or implantation of finasteride, a 5 alpha-reductase inhibitor, in nude mice bearing TP implants resulted in the regrowth of LNCaP 104-R2 tumors. Within 1 week after TP implantation, LNCaP 104-R2 tumors exhibited massive necrosis with severe hemorrhage. Three weeks later, these tumors showed fibrosis with infiltration of chronic inflammatory cells and scattered carcinoma cells exhibiting degeneration. TP treatment of mice with LNCaP 104-R2 tumors reduced tumor androgen receptor and c-myc mRNA levels but increased prostate-specific antigen in serum- and prostate-specific antigen mRNA in tumors. Although androgen ablation has been the standard treatment for metastatic prostate cancer for > 50 years, our study shows that androgen supplementation therapy may be beneficial for treatment of certain types of human prostate cancer and that the use of 5 alpha-reductase inhibitors, such as finasteride or anti-androgens, in the general treatment of metastatic prostate cancer may require careful assessment.
Resumo:
Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.
Resumo:
There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.