912 resultados para NONLINEAR IMPEDANCE
Resumo:
The influence of La2O3, Pr2O3 and CeO2 on a new class of polycrystalline ceramics with nonlinear properties based on SnO2, was investigated. La2O3 and Pr2O3 were found to precipitate at the grain boundary region, causing a considerable increase in the nonlinear behavior. It was found that CeO2 forms a solid solution in the bulk but. unlike La2O3 and Pr2O3, it does not increase the nonlinear behavior. A higher nonlinear coefficient of similar to80 was obtained for La2O3-doped SnO2-based systems. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The objective of this paper is to present a methodology to analyze a transmission line model used in electromagnetic transitory simulators, called equivalent impedance test. Initially the definition of equivalent impedance reference test is shown. Soon after this methodology is applied to a transmission line model, the Quasi-Modes model. The studies were accomplished in a hypothetical non-transposed three-phase transmission fine of 440 kV. The line length is 500 km, and it was modeled through cascades of pi-circuits (with 50 pi's circuits, each with 10 km length).
Resumo:
We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].
Resumo:
The third-order nonlinear optical properties of tellurite glasses with different compositions were investigated in the femtosecond regime at 810 nm. Using the I-scan technique, positive nonlinear refractive indices of similar to 10(-15) cm(2)/W were measured. The authors also determined that nonlinear absorption was negligible for all studied samples. This result, added to their good chemical stability, indicates that tellurite glasses are promising materials for ultrafast photonic applications. (c) 2006 American Institute of Physics.
Resumo:
In this article we examine an inverse heat convection problem of estimating unknown parameters of a parameterized variable boundary heat flux. The physical problem is a hydrodynamically developed, thermally developing, three-dimensional steady state laminar flow of a Newtonian fluid inside a circular sector duct, insulated in the flat walls and subject to unknown wall heat flux at the curved wall. Results are presented for polynomial and sinusoidal trial functions, and the unknown parameters as well as surface heat fluxes are determined. Depending on the nature of the flow, on the position of experimental points the inverse problem sometimes could not be solved. Therefore, an identification condition is defined to specify a condition under which the inverse problem can be solved. Once the parameters have been computed it is possible to obtain the statistical significance of the inverse problem solution. Therefore, approximate confidence bounds based on standard statistical linear procedure, for the estimated parameters, are analyzed and presented.
Resumo:
We examine the appearance of surface waves governed by Burgers and Korteweg-de Vries equations in a shallow viscous heated fluid. We consider waves triggered by a surface-tension variation induced by both temperature and concentration gradients. We also establish the range of parameters for which the above-mentioned equations appear.
Resumo:
The influence of potential on electrochemical behavior of Ti-6Al-7Nb alloy under simulate physiological conditions was investigated by electrochemical impedance spectroscopy (EIS). The experimental results were compared with those obtained by potentiodynamic polarization curves. All measurements were carried out in Hank's aerated solution at 25degreesC, at pH 7.8 and at different potentials (corrosion potential, 0 mV(SCE), 1000 mV(SCE), and 2000 mV(SCE)). The EIS spectra exhibited a two-step or a two-time constant system, suggesting the formation of a two-layer oxide film on the metal surface. The high corrosion resistance, displayed by this alloy in electrochemical polarization tests, is due to the dense inner layer, while its osseointegration ability can be ascribed to the presence of the outer porous layer. (C) 2004 Kluwer Academic Publishers.
Resumo:
A study was made on the effect of the addition of BaO (0.025-0.05 mol%) and Bi2O3 (0.025-0.05 mol%) to the TiO2.Ta2O5.MnO2 material. The samples were characterized by X-ray diffraction, and current-voltage measurements were accomplished for determination of the nonlinear coefficient. An analysis was made to evaluate the microstructural characteristics of the materials. The most appropriate sintering conditions for the materials were analyzed with the purpose of obtaining the best nonlinear coefficient associated with the smallest breakdown electric field. After sintering at 1400 degreesC for 2 h, a low-voltage (30 V cm(-1)) varistor was obtained, which, however, presented a low nonlinear coefficient (6). It was found that the sintering conditions must be controlled in order to improve the electrical properties of these materials. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We obtain the exact classical algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, now containing a calculable correction of order one unit lower. The relation with Yangians and the role of the results in the context of Lie-Poisson algebras are also discussed.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
SnO2:m mol% CoO (0.5 less than or equal to m less than or equal to 6.0) ceramic specimens were studied by impedance spectroscopy in the 5 Hz-13 MHz frequency range during heating cold-pressed specimens from room temperature to 1250 degrees C. The electrical resistivity during sintering decreases from 4 to 6 orders of magnitude in the 400-1500 K temperature range depending on the amount of CoO. An increase in electrical resistivity in the 570-670 K range is related to the release of adsorbed water. The results for the 970-1500 K show that the higher the amount of the CoO addition, the lower is the temperature at which SnO2:CoO reaches a minimum electrical resistivity. This suggests that oxygen point defects created by dissolution of cobalt ions in the SnO2 lattice are controlling the densification rate of these ceramics.
Resumo:
This paper discusses some advances in research conducted on SnO2-based electroceramics. The addition of different dopants, as well as several thermal treatments in oxidizing and inert atmospheres, were found to influence the microstructure and electrical properties of SnO2-based varistor ceramics. Measurements taken by impedance spectroscopy revealed variations in the height and width of the potential barrier resulting from the atmosphere in which thermal treatments were performed. High nonlinear coefficient values, which are characteristic of high-voltage and commercial ZnO varistors, were obtained for these SnO2-based systems. All the systems developed here have potentially promising varistor applications. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical behaviour of potentiodynamically formed thin anodic films of polycrystalline tin in aqueous sodium bicarbonate solutions (pH approximate to 8.3) were studied using cyclic voltammetry and electrochemical impedance spectroscopy. Different equivalent circuits corresponding to various potential regions were employed to account for the electrochemical processes taking place under each condition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.