953 resultados para N-S Equations
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
The shape of a plane acoustical sound-soft obstacle is detected from knowledge of the far field pattern for one time-harmonic incident field. Two methods based on solving a system of integral equations for the incoming wave and the far field pattern are investigated. Properties of the integral operators required in order to apply regularization, i.e. injectivity and denseness of the range, are proved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.
Resumo:
We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear
Resumo:
A boundary-value problems for almost nonlinear singularly perturbed systems of ordinary differential equations are considered. An asymptotic solution is constructed under some assumption and using boundary functions and generalized inverse matrix and projectors.
Resumo:
Sufficient conditions for the existence of bounded solutions of singularly perturbed impulsive differential equations are obtained. For this purpose integral manifolds are used.
Resumo:
In this article on quasidifferential equation with non-fixed time of impulses we consider the continuous dependence of the solutions on the initial conditions as well as the mappings defined by these equations. We prove general theorems for quasidifferential equations from which follows corresponding results for differential equations, differential inclusion and equations with Hukuhara derivative.
Resumo:
In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.