943 resultados para Myocardial Ischemia
Resumo:
We present the case of a patient who presented with acute inferior myocardial infarction and embolic occlusion of the distal left anterior descending and proximal right coronary artery. A large atrial septal defect (ASD) was seen on transesophageal echocardiography and the ASD was closed during the same session as coronary angiography and percutaneous coronary intervention. The presence of embolic or thrombotic occlusions of coronary arteries should prompt interventional cardiologists to look for a patent foramen ovale or ASD and perform percutaneous closure right away.
Resumo:
BACKGROUND: Myocardial contrast echocardiography (MCE) is able to measure in vivo relative blood volume (rBV, i.e., capillary density), and its exchange frequency b, the constituents of myo-cardial blood flow (MBF, ml min-1 g-1). This study aimed to assess, by MCE, whether left ventricular hypertrophy (LVH) in hypertrophic cardiomyopathy (HCM) can be differentiated from LVH in triathletes (athlete's heart, AH) or from hypertensive heart disease patients (HHD). METHODS: Sixty individuals, matched for age (33 +/- 10 years) and gender, and subdivided into four groups (n = 15) were examined: HCM, AH, HHD and a group of sedentary individuals without LVH (S). rBV (ml ml-1), b (min-1) and MBF, at rest and during adenosine-induced hyperaemia, were derived by MCE in mid septal, lateral and inferior regions. The ratio of MBF during hyperaemia and MBF at rest yielded myocardial blood flow reserve (MBFR). RESULTS: Septal wall rBV at rest was lower in HCM (0.084 +/- 0.023 ml ml-1) than in AH (0.151 +/- 0.024 ml ml-1, p <0.01) and in S (0.129 +/- 0.026 ml ml-1, p <0.01), but was similar to HHD (0.097 +/- 0.016 ml ml-1). Conversely, MBFR was lowest in HCM (1.67 +/- 0.93), followed by HHD (2.8 +/- 0.93, p <0.01), by S (3.36 +/- 1.03, p <0.001) and by AH (4.74 +/- 1.46, p <0.0001). At rest, rBV <0.11 ml ml-1 accurately distinguished between HCM and AH (sensitivity 99%, specificity 99%), similarly MBFR < or =1.8 helped to distinguish between HCM and HHD (sensitivity 100%, specificity 77%). CONCLUSIONS: rBV at rest, most accurately distinguishes between pathological LVH due to HCM and physiological, endurance-exercise induced LVH.
Resumo:
BACKGROUND: The efficacy of granulocyte colony-stimulating factor (G-CSF) for coronary collateral growth promotion and thus impending myocardial salvage has not been studied so far, to our best knowledge. METHODS AND RESULTS: In 52 patients with chronic stable coronary artery disease, age 62+/-11 years, the effect on a marker of myocardial infarct size (ECG ST segment elevation) and on quantitative collateral function during a 1-minute coronary balloon occlusion was tested in a randomized, placebo-controlled, double-blind fashion. The study protocol before coronary intervention consisted of occlusive surface and intracoronary lead ECG recording as well as collateral flow index (CFI, no unit) measurement in a stenotic and a > or =1 normal coronary artery before and after a 2-week period with subcutaneous G-CSF (10 microg/kg; n=26) or placebo (n=26). The CFI was determined by simultaneous measurement of mean aortic, distal coronary occlusive, and central venous pressure. The ECG ST segment elevation >0.1 mV disappeared significantly more often in response to G-CSF (11/53 vessels; 21%) than to placebo (0/55 vessels; P=0.0005), and simultaneously, CFI changed from 0.121+/-0.087 at baseline to 0.166+/-0.086 at follow-up in the G-CSF group, and from 0.152+/-0.082 to 0.131+/-0.071 in the placebo group (P<0.0001 for interaction of treatment and time). The absolute change in CFI from baseline to follow-up amounted to +0.049+/-0.062 in the G-CSF group and to -0.010+/-0.060 in the placebo group (P<0.0001). CONCLUSIONS: Subcutaneous G-CSF is efficacious during a short-term protocol in improving signs of myocardial salvage by coronary collateral growth promotion.
Resumo:
BACKGROUND: Clinician-rated large-scale studies estimating the prevalence of posttraumatic stress disorder (PTSD) related to myocardial infarction (MI) and identifying predictors of clinical PTSD are currently lacking. HYPOTHESES: We hypothesized that PTSD is prevalent in post-MI patients and that the subjective experience of the MI determines PTSD status. METHODS: We approached 951 post-MI patients with a questionnaire screening for PTSD symptoms related to their MI. Those responding and meeting a cutoff of PTSD symptom levels were invited to participate in a structured clinical interview to diagnose PTSD following Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Fear of dying, feelings of helplessness, and severity of pain perceived during the MI were also assessed by visual analog scales. RESULTS: The screening questionnaire was completed by 394 patients, whereby 77 met the cutoff for the interview (8 patients declined the interview). Forty of 394 patients (10.2%) had clinical PTSD (subsyndromal and syndromal forms combined). Younger age (OR 0.95, 95% CI 0.91-0.99), greater fear of dying (OR 2.77, 95% CI 1.28-5.97), and more intense feelings of helplessness (OR 2.97, 95% CI 1.42-6.21) were independent predictors of PTSD status. Perceived pain intensity during MI, sex, type of index MI, left ventricular ejection fraction, number of coronary occlusions, and highest level of total creatinine kinase were not significant predictors. CONCLUSIONS: Clinical PTSD is prevalent in post-MI patients. Demographic and particularly psychological variables related to the subjective experience of the event were stronger predictors of PTSD status than were objective measures of MI severity.
Resumo:
Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion.
Resumo:
BACKGROUND: The noble gas helium is devoid of anesthetic effects, and it elicits cardiac preconditioning. We hypothesized that inhalation of helium provides protection against postocclusive endothelial dysfunction after ischemia-reperfusion of the forearm in humans. METHODS: Eight healthy male subjects were enrolled in this study with a crossover design. Each volunteer was randomly exposed to 15 min of forearm ischemia in the presence or absence of helium inhalation. Helium was inhaled at an end-tidal concentration of 50 vol% from 15 min before ischemia until 5 min after the onset of reperfusion ("helium conditioning"). Hyperemic reaction, a marker of nitric oxide bioavailability and endothelial function, was determined at 15 and 30 min of reperfusion on the forearm using venous occlusion plethysmography. Expression of the proinflammatory markers CD11b, ICAM-1, PSGL-1, and L-selectin (CD62L) on leukocytes and P-selectin (CD62P), PSGL-1, and CD42b on platelets were measured by flow cytometry during reperfusion. RESULTS: Ischemia-reperfusion consistently reduced the postocclusive endothelium-dependent hyperemic reaction at 15 and 30 min of reperfusion. Periischemic inhalation of helium at 50 vol% did not improve postocclusive hyperemic reaction. Helium decreased expression of the proinflammatory marker CD11b and ICAM-1 on leukocytes and attenuated the expression of the procoagulant markers CD42b and PSGL-1 on platelets. CONCLUSIONS: Although inhalation of helium diminished the postischemic inflammatory reaction, our data indicate that human endothelium, which is a component of all vital organs, is not amenable to protection by helium at 50 vol% in vivo. This is in contrast to sevoflurane, which protects human endothelium at low subanesthetic concentrations.
Resumo:
PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.
Resumo:
AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.
Resumo:
Chronic critical limb ischemia still poses a substantial threat to both limb and life of the affected patients since these patients suffer typically also from associated cardiac and cerebrovascular disease and other severe comorbidities. Due to improved secondary prevention strategies and dedicated technical innovation, however, clinical outcomes have improved in the recent years. Purpose of this article is to provide a balanced discussion of contemporary treatment concepts for patients with critical limb ischemia with a focus on arterial revascularization.
Controlled reperfusion reduces extent of reperfusion injury in a rodent model of acute limb ischemia
Resumo:
A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.
Resumo:
NV1FGF is an expression plasmid encoding sp.FGF-1(21-154) currently under investigation for therapeutic angiogenesis in clinical trials. NV1FGF plasmid distribution and transgene expression following intramuscular (IM) injection in patients is unknown. The study involved six patients with chronic critical limb ischemia (CLI) planned to undergo amputation. A total dose of 0.5, 2, or 4 mg NV1FGF was administered as eight IM injections (0.006, 0.25, or 0.5 mg per injection) 3-5 days before amputation. Injected sites (30 cm(3)) were divided into equally sized smaller pieces to assess spatial distribution of NV1FGF sequences (PCR), NV1FGF mRNA (reverse transcriptase-PCR), and fibroblast growth factor-1 (FGF-1)-expressing cells (immunohistochemistry). Data indicated gene expression at all doses. The distribution area was within 5-12 cm for NV1FGF sequences containing the expression cassette, up to 5 cm for NV1FGF mRNA, and up to 3 cm for FGF-1-expressing myofibers. All FGF receptors were detected indicating robust potential for bioactivity after NV1FGF gene transfer. Circulating levels of NV1FGF sequences were shown to decrease within days after injection. Data support demonstration of plasmid-mediated gene transfer and expression in muscles from patients with CLI. FGF-1 expression was shown to be limited to injection sites, which supports the concept of multiple-site injection for therapeutic use.