941 resultados para Multiobjective Evolutionary Algorithm
Resumo:
Channel-aware assignment of subchannels to users in the downlink of an OFDMA system requires extensive feedback of channel state information (CSI) to the base station. Since bandwidth is scarce, schemes that limit feedback are necessary. We develop a novel, low feedback, distributed splitting-based algorithm called SplitSelect to opportunistically assign each subchannel to its most suitable user. SplitSelect explicitly handles multiple access control aspects associated with CSI feedback, and scales well with the number of users. In it, according to a scheduling criterion, each user locally maintains a scheduling metric for each subchannel. The goal is to select, for each subchannel, the user with the highest scheduling metric. At any time, each user contends for the subchannel for which it has the largest scheduling metric among the unallocated subchannels. A tractable asymptotic analysis of a system with many users is central to SplitSelect's simple design. Extensive simulation results demonstrate the speed with which subchannels and users are paired. The net data throughput, when the time overhead of selection is accounted for, is shown to be substantially better than several schemes proposed in the literature. We also show how fairness and user prioritization can be ensured by suitably defining the scheduling metric.
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
This paper reports the results of employing an artificial bee colony search algorithm for synthesizing a mutually coupled lumped-parameter ladder-network representation of a transformer winding, starting from its measured magnitude frequency response. The existing bee colony algorithm is suitably adopted by appropriately defining constraints, inequalities, and bounds to restrict the search space and thereby ensure synthesis of a nearly unique ladder network corresponding to each frequency response. Ensuring near-uniqueness while constructing the reference circuit (i.e., representation of healthy winding) is the objective. Furthermore, the synthesized circuits must exhibit physical realizability. The proposed method is easy to implement, time efficient, and problems associated with the supply of initial guess in existing methods are circumvented. Experimental results are reported on two types of actual, single, and isolated transformer windings (continuous disc and interleaved disc).
Resumo:
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of C alpha atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Resumo:
We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.
Resumo:
This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.
Resumo:
Background: The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.