984 resultados para Multicopper Oxidase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amplification of carboxylesterase genes is a mechanism of organophosphate resistance in Culex mosquitoes. Amplified carboxylesterase genes from an insecticide resistant Culex pipiens strain collected in Cyprus were analysed and compared to other Culex amplified carboxylesterase alleles. A 12 kb section of genomic DNA containing two gene loci coding for carboxylesterase alleles A5 and B5 was cloned and sequenced. A comparison between this amplicon and one from a strain with co-amplified carboxylesterase alleles A2 and B2 revealed a number of differences. The intergenic spacer was 3.7 kb in length in the A5-B5 amplicon (2.7 kb in A2-B2) and contained putative Juan and transposable elements upstream of B5. A fragment of a gene with high homology to aldehyde oxidase was also present immediately downstream of A5. The comparison revealed no differences that would explain the successful spread of the A2-B2 amplicon worldwide whilst the A5-B5 amplicon is restricted to the Mediterranean. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusual Gram-negative, catalase- and oxidase-positive, coccus-shaped bacteria isolated from the lungs of two lambs were characterized by phenotypic and molecular-genetic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were genealogically highly related to each other (99.8% sequence similarity) and represent a novel subline within the genus Psychrobacter. The unknown bacterium was phylogenetically closely related to, but distinct from, Psychrobacter phenylpyruvicus, Psychrobacter immobilis, Psychrobacter glacincola and Psychrobacter urativorans. The novel Psychrobacter isolates were readily distinguished from all other Psychrobacter species and other Gram-negative, oxidase-positive bacteria usually responsible for lung infections in sheep by physiological and biochemical tests. Based on molecular-genetic and phenotypic evidence, it is proposed that the unknown Psychrobacter isolates from lambs be classified as Psychrobacterpulmonis sp. nov. The type strain is strain S-606(T) (= CECT 5989(T) = CCUG 46240(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence to suggest that neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Therefore, treatment regimes aimed at modulating neuroinflammatory processes may act to slow the progression of these debilitating brain disorders. Recently, a group of dietary polyphenols known as flavonoids have been shown to exert neuroprotective effects in vivo and in neuronal cell models. In this review we discuss the evidence relating to the modulation of neuroinflammation by flavonoids. We highlight the evidence which suggests their mechanism of action involves: 1) attenuation of the release of cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α); 2) an inhibitory action against inducible nitric oxide synthase (iNOS) induction and subsequent nitric oxide (NO•) production; 3) inhibition of the activation of NADPH oxidase and subsequent reactive oxygen species generation; 4) a capacity to down-regulate the activity of pro-inflammatory transcription factors such as nuclear factor-κB (NF-κB); and 5) the potential to modulate signalling pathways such as mitogen-activated protein kinase (MAPK) cascade. We also consider the potential of these dietary compounds to represent novel therapeutic agents by considering their metabolism in the body and their ability to access the brain via the blood brain barrier. Finally, we discuss future areas of study which are necessary before dietary flavonoids can be established as therapeutic agents against neuroinflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five Gram-negative, motile, aerobic to microaerophilic spirilla were isolated from various depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strains are oxidase- and catalase-positive, metabolize a variety of sugars and carboxylic acids and have an absolute requirement for sodium ions. The predominant fatty acids of the organisms are C-16: (1)omega7c, C-16:0 and C(18:1)omega7c, with C-10:1 3-OH, C-10:0 3-OH, C-12:0 3-OH, C-14:1 3-OH, C-14:0 3-OH and C-19:1 present in smaller amounts. The main polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylamine. The DNA base composition of the strains is 54-55 mol% G + C. 16S rRNA gene sequence comparisons show that the isolates are related to the genera Oceanospirillum, Pseudospirillum, Marinospirillum, Halomonas and Chromohalobacter in the gamma-Proteobacteria. Morphological, physiological and genotypic differences from these previously described genera support the description of a novel genus and species, Saccharospirillum impatiens gen. nov., sp. nov. The type strain is EL-105(T) (= DSM 12546(T) = CECT 5721(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Gram-negative, aerobic to microaerophilic rod was isolated from 10 m depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strain was oxidase- and catalase-positive, metabolized a variety of carboxylic acids and sugars and produced lipase. Cells had an absolute requirement for artificial sea water, which could not be replaced by NaCl. A large in vivo absorption band at 870 nm indicated production of bacteriochlorophyll a. The predominant fatty acids of this organism were 16:0 and 18:1omega7c, with 3-OH 10:0, 16:1omega7c and 18:0 in lower amounts. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. Ubiquinone 10 was produced. The DNA G + C content was 67 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represents a member of the Roseobacter clade within the alpha-Proteobacteria. The organism showed no particular relationship to any members of this clade but clustered on the periphery of the genera Jannaschia, Octadecabacter and 'Marinosulfonomonas' and the species Ruegeria gelatinovorans. Distinct morphological, physiological and genotypic differences to these previously described taxa supported the description of a new genus and a novel species, for which the name Roseisalinus antarcticus gen. nov., sp. nov. is proposed. The type strain is EL-88(T) (= DSM 11466(T) = CECT 7023(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological, biochemical and molecular genetic studies were carried out on an unknown non-spore-forming, Gram-negative, rod-shaped bacterium which was isolated from dog faeces. The bacterium grew under anaerobic conditions, was asaccharolytic, resistant to 20% (v/v) bile and was oxidase- and urease-negative. Phylogenetic analysis based on comparative 16S rRNA gene sequencing showed that the unidentified bacterium clustered with Sutterella wadsworthensis, although a sequence divergence of > 5% indicated that the bacterium from dog faeces represented a previously unrecognized subline within the genus. On the basis of the presented findings, a novel species, Sutterella stercoricanis sp. nov., is described. The type strain of Sutterella stercoricanis is 5BAC4(T) ( = CCUG 47620(T) = CIP 108024(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. The beta-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. S-(1,1,2,2-Tetrafluoroethyl)-L-CySteine is an excellent aminotransferase and beta-lyase substrate of rhGTK. Moderate aminotransferase and beta-lyase activities occur with the chemopreventive agent Se-methyl-L-selenocysteine. L-3-(2-Naphthyl)alanine, L-3-(1-naphthyl)alanine, 5-S-L-cysteinyldopamine and 5-S-L-cysteinyl-L-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The alpha-keto acids generated by transamination/L-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed beta-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-L-CysteinyIdopamine, but not with 5-S-L-CySteinyl-L-DOPA. The importance of transamination, oxidation and beta-elimination reactions involving 5-S-L-cysteinyldopamine, 5-S-L-cysteinyt-L-DOPA and Se-methyl-L-selenocysteirte in human tissues and their biological relevance are discussed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the relationship between blood antioxidant enzyme activities, indices of inflammatory status and a number of lifestyle factors in the Caerphilly prospective cohort study of ischaemic heart disease. The study began in 1979 and is based on a representative male population sample. Initially 2512 men were seen in phase I, and followed-up every 5 years in phases II and III; they have recently been seen in phase IV. Data on social class, smoking habit, alcohol consumption were obtained by questionnaire, and body mass index was measured. Antioxidant enzyme activities and indices of inflammatory status were estimated by standard techniques. Significant associations were observed for: age with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin, both protein and oxidase (p<0.0001); smoking habit with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin, both protein and oxidase (p<0.0001) and with glutathione peroxidose (GPX) (p<0.0001); social class with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin both protein (p<0.001) and oxidase (p<0.01) and with GPX (p<0.0001); body mass index with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin protein (p<0.001). There was no significant association between alcohol consumption and any of the blood enzymes measured. Factor analysis produced a three-factor model (explaining 65.9% of the variation in the data set) which appeared to indicate close inter-relationships among antioxidants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conditions of stress, such as myocardial infarction, stimulate up-regulation of heme oxygenase (HO-1) to provide cardioprotection. Here, we show that CO, a product of heme catabolism by HO-1, directly inhibits native rat cardiomyocyte L-type Ca2+ currents and the recombinant alpha1C subunit of the human cardiac L-type Ca2+ channel. CO (applied via a recognized CO donor molecule or as the dissolved gas) caused reversible, voltage-independent channel inhibition, which was dependent on the presence of a spliced insert in the cytoplasmic C-terminal region of the channel. Sequential molecular dissection and point mutagenesis identified three key cysteine residues within the proximal 31 amino acids of the splice insert required for CO sensitivity. CO-mediated inhibition was independent of nitric oxide and protein kinase G but was prevented by antioxidants and the reducing agent, dithiothreitol. Inhibition of NADPH oxidase and xanthine oxidase did not affect the inhibitory actions of CO. Instead, inhibitors of complex III (but not complex I) of the mitochondrial electron transport chain and a mitochondrially targeted antioxidant (Mito Q) fully prevented the effects of CO. Our data indicate that the cardioprotective effects of HO-1 activity may be attributable to an inhibitory action of CO on cardiac L-type Ca2+ channels. Inhibition arises from the ability of CO to promote generation of reactive oxygen species from complex III of mitochondria. This in turn leads to redox modulation of any or all of three critical cysteine residues in the channel's cytoplasmic C-terminal tail, resulting in channel inhibition.