867 resultados para Motor-rotor simplified model
Resumo:
A panel method free-wake model to analyse the rotor flapping is presented. The aerodynamic model consists of a panel method, which takes into account the three-dimensional rotor geometry, and a free-wake model, to determine the wake shape. The main features of the model are the wake division into a near-wake sheet and a far wake represented by a single tip vortex, and the modification of the panel method formulation to take into account this particular wake description. The blades are considered rigid with a flap degree of freedom. The problem solution is approached using a relaxation method, which enforces periodic boundary conditions. Finally, several code validations against helicopter and wind turbine experimental data are performed, showing good agreement
Resumo:
La evaluación de las prestaciones de las embarcaciones a vela ha constituido un objetivo para ingenieros navales y marinos desde los principios de la historia de la navegación. El conocimiento acerca de estas prestaciones, ha crecido desde la identificación de los factores clave relacionados con ellas(eslora, estabilidad, desplazamiento y superficie vélica), a una comprensión más completa de las complejas fuerzas y acoplamientos involucrados en el equilibrio. Junto con este conocimiento, la aparición de los ordenadores ha hecho posible llevar a cabo estas tareas de una forma sistemática. Esto incluye el cálculo detallado de fuerzas, pero también, el uso de estas fuerzas junto con la descripción de una embarcación a vela para la predicción de su comportamiento y, finalmente, sus prestaciones. Esta investigación tiene como objetivo proporcionar una definición global y abierta de un conjunto de modelos y reglas para describir y analizar este comportamiento. Esto se lleva a cabo sin aplicar restricciones en cuanto al tipo de barco o cálculo, sino de una forma generalizada, de modo que sea posible resolver cualquier situación, tanto estacionaria como en el dominio del tiempo. Para ello se comienza con una definición básica de los factores que condicionan el comportamiento de una embarcación a vela. A continuación se proporciona una metodología para gestionar el uso de datos de diferentes orígenes para el cálculo de fuerzas, siempre con el la solución del problema como objetivo. Esta última parte se plasma en un programa de ordenador, PASim, cuyo propósito es evaluar las prestaciones de diferentes ti pos de embarcaciones a vela en un amplio rango de condiciones. Varios ejemplos presentan diferentes usos de PASim con el objetivo de ilustrar algunos de los aspectos discutidos a lo largo de la definición del problema y su solución . Finalmente, se presenta una estructura global de cara a proporcionar una representación virtual de la embarcación real, en la cual, no solo e l comportamiento sino también su manejo, son cercanos a la experiencia de los navegantes en el mundo real. Esta estructura global se propone como el núcleo (un motor de software) de un simulador físico para el que se proporciona una especificación básica. ABSTRACT The assessment of the performance of sailing yachts, and ships in general, has been an objective for naval architects and sailors since the beginning of the history of navigation. The knowledge has grown from identifying the key factors that influence performance(length, stability, displacement and sail area), to a much more complete understanding of the complex forces and couplings involved in the equilibrium. Along with this knowledge, the advent of computers has made it possible to perform the associated tasks in a systematic way. This includes the detailed calculation of forces, but also the use of those forces, along with the description of a sailing yacht, to predict its behavior, and ultimately, its performance. The aim of this investigation is to provide a global and open definition of a set of models and rules to describe and analyze the behavior of a sailing yacht. This is done without applying any restriction to the type of yacht or calculation, but rather in a generalized way, capable of solving any possible situation, whether it is in a steady state or in the time domain. First, the basic definition of the factors that condition the behavior of a sailing yacht is given. Then, a methodology is provided to assist with the use of data from different origins for the calculation of forces, always aiming towards the solution of the problem. This last part is implemented as a computational tool, PASim, intended to assess the performance of different types of sailing yachts in a wide range of conditions. Several examples then present different uses of PASim, as a way to illustrate some of the aspects discussed throughout the definition of the problem and its solution. Finally, a global structure is presented to provide a general virtual representation of the real yacht, in which not only the behavior, but also its handling is close to the experience of the sailors in the real world. This global structure is proposed as the core (a software engine) of a physical yacht simulator, for which a basic specification is provided.
Resumo:
Glial-cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for adult nigral dopamine neurons in vivo. GDNF has both protective and restorative effects on the nigro-striatal dopaminergic (DA) system in animal models of Parkinson disease. Appropriate administration of this factor is essential for the success of its clinical application. Since it cannot cross the blood–brain barrier, a gene transfer method may be appropriate for delivery of the trophic factor to DA cells. We have constructed a recombinant adenovirus (Ad) encoding GDNF and injected it into rat striatum to make use of its ability to infect neurons and to be retrogradely transported by DA neurons. Ad-GDNF was found to drive production of large amounts of GDNF, as quantified by ELISA. The GDNF produced after gene transfer was biologically active: it increased the survival and differentiation of DA neurons in vitro. To test the efficacy of the Ad-mediated GDNF gene transfer in vivo, we used a progressive lesion model of Parkinson disease. Rats received injections unilaterally into their striatum first of Ad and then 6 days later of 6-hydroxydopamine. We found that mesencephalic nigral dopamine neurons of animals treated with the Ad-GDNF were protected, whereas those of animals treated with the Ad-β-galactosidase were not. This protection was associated with a difference in motor function: amphetamine-induced turning was much lower in animals that received the Ad-GDNF than in the animals that received Ad-β-galactosidase. This finding may have implications for the development of a treatment for Parkinson disease based on the use of neurotrophic factors.
Resumo:
Bacterial chemotaxis is widely studied because of its accessibility and because it incorporates processes that are important in a number of sensory systems: signal transduction, excitation, adaptation, and a change in behavior, all in response to stimuli. Quantitative data on the change in behavior are available for this system, and the major biochemical steps in the signal transduction/processing pathway have been identified. We have incorporated recent biochemical data into a mathematical model that can reproduce many of the major features of the intracellular response, including the change in the level of chemotactic proteins to step and ramp stimuli such as those used in experimental protocols. The interaction of the chemotactic proteins with the motor is not modeled, but we can estimate the degree of cooperativity needed to produce the observed gain under the assumption that the chemotactic proteins interact directly with the motor proteins.
Resumo:
Kinesin is a processive motor protein: A single molecule can walk continuously along a microtubule for several micrometers, taking hundreds of 8-nm steps without dissociating. To elucidate the biochemical and structural basis for processivity, we have engineered a heterodimeric one-headed kinesin and compared its biochemical properties to those of the wild-type two-headed molecule. Our construct retains the functionally important neck and tail domains and supports motility in high-density microtubule gliding assays, though it fails to move at the single-molecule level. We find that the ATPase rate of one-headed kinesin is 3–6 s−1 and that detachment from the microtubule occurs at a similar rate (3 s−1). This establishes that one-headed kinesin usually detaches once per ATP hydrolysis cycle. Furthermore, we identify the rate-limiting step in the one-headed hydrolysis cycle as detachment from the microtubule in the ADP⋅Pi state. Because the ATPase and detachment rates are roughly an order of magnitude lower than the corresponding rates for two-headed kinesin, the detachment of one head in the homodimer (in the ADP⋅Pi state) must be accelerated by the other head. We hypothesize that this results from internal strain generated when the second head binds. This idea accords with a hand-over-hand model for processivity in which the release of the trailing head is contingent on the binding of the forward head. These new results, together with previously published ones, allow us to propose a pathway that defines the chemical and mechanical cycle for two-headed kinesin.
Resumo:
A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.
Resumo:
By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage.
Resumo:
Understanding the mechanism of protein secondary structure formation is an essential part of the protein-folding puzzle. Here, we describe a simple statistical mechanical model for the formation of a β-hairpin, the minimal structural element of the antiparallel β-pleated sheet. The model accurately describes the thermodynamic and kinetic behavior of a 16-residue, β-hairpin-forming peptide, successfully explaining its two-state behavior and apparent negative activation energy for folding. The model classifies structures according to their backbone conformation, defined by 15 pairs of dihedral angles, and is further simplified by considering only the 120 structures with contiguous stretches of native pairs of backbone dihedral angles. This single sequence approximation is tested by comparison with a more complete model that includes the 215 possible conformations and 15 × 215 possible kinetic transitions. Finally, we use the model to predict the equilibrium unfolding curves and kinetics for several variants of the β-hairpin peptide.
Resumo:
To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein.
Resumo:
We investigated how human subjects adapt to forces perturbing the motion of their ams. We found that this kind of learning is based on the capacity of the central nervous system (CNS) to predict and therefore to cancel externally applied perturbing forces. Our experimental results indicate: (i) that the ability of the CNS to compensate for the perturbing forces is restricted to those spatial locations where the perturbations have been experienced by the moving arm. The subjects also are able to compensate for forces experienced at neighboring workspace locations. However, adaptation decays smoothly and quickly with distance from the locations where disturbances had been sensed by the moving limb. (ii) Our experiments also how that the CNS builds an internal model of the external perturbing forces in intrinsic (muscles and / or joints) coordinates.
Resumo:
The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain.
Resumo:
Motor domains of the Drosophila minus-end-directed microtubule (MT) motor protein ncd, were found to saturate microtubule binding sites at a stoichiometry of approximately one motor domain per tubulin dimer. To determine the tubulin subunit(s) involved in binding to ncd, mixtures of ncd motor domain and MTs were treated with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide) (EDC). EDC treatment generated covalently cross-linked products of ncd and alpha-tubulin and of ncd and beta-tubulin, indicating that the ncd motor domain interacts with both alpha- and beta-tubulin. When the Drosophila kinesin motor domain protein was substituted for the ncd motor domain, cross-linked products of kinesin and alpha-tubulin and of kinesin and beta-tubulin were produced. EDC treatment of mixtures of ncd motor domain and unassembled tubulin dimers or of kinesin motor domain and unassembled tubulin dimers produced the same motor-tubulin products generated in the presence of MTs. These results indicate that kinesin family motors of opposite polarity interact with both tubulin monomers and support a model in which some portion of each protein's motor domain overlaps adjacent alpha- and beta-tubulin subunits.
Resumo:
Ebola virus disease is a lethal human and primate disease that requires a particular attention from the international health authorities due to important recent outbreaks in some Western African countries and isolated cases in European and North-America continents. Regarding the emergency of this situation, various decision tools, such as mathematical models, were developed to assist the authorities to focus their efforts in important factors to eradicate Ebola. In a previous work, we have proposed an original deterministic spatial-temporal model, called Be-CoDiS (Between-Countries Disease Spread), to study the evolution of human diseases within and between countries by taking into consideration the movement of people between geographical areas. This model was validated by considering numerical experiments regarding the 2014-16 West African Ebola Virus Disease epidemic. In this article, we propose to perform a stability analysis of Be-CoDiS. Our first objective is to study the equilibrium states of simplified versions of this model, limited to the cases of one an two countries, and to determine their basic reproduction ratios. Then, in order to give some recommendations for the allocation of resources used to control the disease, we perform a sensitivity analysis of those basic reproduction ratios regarding the model parameters. Finally, we validate the obtained results by considering numerical experiments based on data from the 2014-16 West African Ebola Virus Disease epidemic.
Unidade microcontroladora para gerenciamento eletrônico de um motor de combustão interna ciclo Otto.
Resumo:
Nas últimas décadas, a indústria automobilística mundial vem investindo no desenvolvimento tecnológico dos motores, com o objetivo de alcançar melhor eficiência energética e atender às legislações que limitam a quantidade de resíduos tóxicos nos gases de exaustão e menor consumo de combustível. Isso resultou na implantação dos sistemas de gerenciamento eletrônico do motor, que possibilitam funcionalidades para se controlar diversas variáveis do motor, aumentando consideravelmente o rendimento do motor. Este trabalho tem como objetivos explorar a dinâmica de um motor de combustão interna ciclo Otto, os sinais elétricos associados, e os componentes de seu gerenciamento eletrônico. A partir dessas informações, o trabalho apresenta o processo de analise dos sinais elétricos e as estratégias de controle utilizadas em um sistema de gerenciamento real. Assim, são desenvolvidos o hardware e o firmware de uma unidade microcontroladora para gerenciamento eletrônico do motor. O hardware foi elaborado com uma concepção centralizada, ou seja, foi usado apenas um microcontrolador de 32-bit para gerenciar todas as funções. O firmware de controle foi desenvolvido de forma modular baseado em modelos de malha fechada. O modelo matemático do motor foi identificado utilizando técnicas de controle em um veículo real, e a avalidação do modelo foi obtida através de testes em um dinamômetro inercial.
Resumo:
A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.