948 resultados para Mosca-varejeira - Larva
Resumo:
Currently the genus Corynoneura Winnertz comprises 10 species already cited or described for the Neotropical region. In the present paper 15 new species are described for the Neotropics: 12 new species are described from Brazil, five of them are described as male, female, pupa and larva, Corynoneura canchim sp. n., C. diogo sp. n., C. espraiado sp. n., C. humbertoi sp. n., C. salviniatilis sp. n.; three as male, pupa and larva, C. franciscoi sp. n.; C. longiantenna sp. n. and C. renata sp. n.; the species C. sisbiota sp. n. as male, female and pupa; C. bodoquena sp. n. as male and pupa and C. boraceiasp. n. and C. vidiapodeme sp. n. as males. Corynoneura trondi sp. n. is described from Chile (male, pupa), C. guanacaste sp. n. from Costa Rica (male) and C. zempoala sp. n. from Mexico (male). The knowledge of the distribution of Corynoneura fortispicula, C. sertaodaquina, C. septadentata and C. unicapsulata all species described by Wiedenbrug and Trivinho-Strixino (2011) as well as Corynoneura ferelobata Sublette et Sasa is extended. A larval morphotype is also included. Keys for males, females, pupae and larvae to known species of the Neotropical Corynoneura are given.
Resumo:
Immatures of the Phelypera schuppeli (Boheman, 1834) (Curculionidae; Hyperinae; Cepurini) are described, illustrated and compared with available descriptions of larvae and pupae of Hyperini. Immatures and adults from midwest (Dourados, Mato Grosso do Sul; Pirenopolis, Goias) and southeast Brazil (Bauru, Sao Paulo) were found on leaves of the host plant, Pachira aquatica Aubl. (Malvaceae, formerly Bombacaceae), a tree used as an ornamental plant in many Brazilian frost-free cities. Larvae of P. schuppeli are exophytic, brightly colored, eruciform and possess abdominal ambulatory ampullae, resembling larvae of Lepidoptera. Mature larvae can spin globular lattice-like cocoons where pupation takes place. Data in the field and under laboratory conditions confirmed previously published biological observations on P. schuppeli. Additional information about defensive behaviors, process of cocoon construction and natural enemies, such as the larval predator Supputius cinticeps (Stal, 1860) (Hemiptera: Pentatomidae) and the prepupal and pupal parasitoid Jaliscoa nudipennis Boucek, 1993 (Hymenoptera: Pteromalidae), are reported.
Resumo:
In addition to the strong influence of the broodstock diet on the development and survival of offspring, domestication may also interfere with the larval life success. We obtained eggs from wild and domesticated Salminus hilarii females and domesticated males. Wild females were caught in the Tiete River and tributaries, and the domesticated females were born three years before the beginning of the experiment in the Ponte Nova Fish Farm. Animals from both groups were fed with the same feed to exclude feed variables. The eggs and larvae were sampled at 0, 8, 16, and 28 h after spawning (HAS), with the last sampling (28 HAS) coinciding with hatching time. After hatching, samplings proceeded at 32, 48, 66, and 96 HAS, with the last sampling (96 HAS) corresponding to the end of yolk sac consumption. Finally, the last experimental period was during the larvae exogenous feeding phase, at 102, 118, 166, and 214 HAS. Our data revealed that domestication of S. hilarii females influenced fatty acid (FA) metabolism during embryo and larva development. However, the structure of membrane phospholipid FA remained mostly stable, with changes principally in the neutral fraction. When the external conditions, mainly water and feed quality, remained constant, domestication of S. hilarii females did not significantly affect the structural FA composition but influenced the selectivity of consumption and/or storage of specific FA.
Resumo:
Termites are social cockroaches and this sociality is founded on a high plasticity during development. Three molting types (progressive, stationary and regressive molts) are fundamental to achieve plasticity during alate/sexual development, and they make termites a major challenge to any model on endocrine regulation in insect development. As the endocrine signatures underpinning this plasticity are barely understood, we studied the developmental dynamics and their underlying juvenile hormone OH) titers in a wood-dwelling termite. Cryptotermes secundus, which is characterized by an ancestral life style of living in dead wood and individuals being totipotent in development. The following general pattern elements could be identified during winged sexual development (i) regressive molts were accompanied by longer intermolt periods than other molting types, (ii) JH titers decreased gradually during the developmental transition from larva (immatures without wing buds), to nymph (immatures with wing buds), to winged adult, (iii) in all nymphal stages, the JH titer rose before the next molt and dropped thereafter within the first week, (iv) considerable variation in JH titers occurred in the midphase of the molting cycle of the 2nd and 3rd nymphal instar, inferring that this variation may reflect the underlying endocrine signature of each of the three molting types, (v) the 4th nymphal instar, the shortest of all, seems to be a switch point in development, as nymphs in this stage mainly developed progressively. When comparing these patterns with endocrine signatures seen in cockroaches, the developmental program of Cryprotermes can be interpreted as a co-option and repetitive use of hormonal dynamics of the post dorsal-closure phase of cockroach embryonic development. (C) 2012 Elsevier Ltd. All tights reserved.
Resumo:
Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered to be the main pest of maize crops in Brazil. Entomopathogenic nematodes (EPN) may be used to control this pest and exhibit different, unique abilities to search for their hosts. The movement of EPN in relation to S. frugiperda was evaluated. To test for horizontal movement, a styrofoam enclosure filled with sand was divided into segments, nematodes were placed at the entrance to the enclosure and a larva was placed at the end of each division. The same approach was used to evaluate vertical movement; however, PVC pipes were used in this case. In general, the mortality was inversely proportional to the initial distance between host and nematodes. In the vertical displacement test, both nematodes were able to kill the larvae up to a distance of 25 cm. Therefore, the infective juveniles of H. amazonensis and S. arenarium can search out, infect and kill larvae of S. frugiperda at distances of up to 60 cm and 25 cm of horizontal and vertical displacement, respectively.
Resumo:
The aim of this study was to evaluate the profile of the enzymes creatine kinase (CK), creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH) in Wistar rats infected with 250 (GI, n = 24) or 1000 (GII, n = 24) Toxocara canis eggs. Animals were evaluated on days 7, 15, 30, 60, 120 and 180 post-infection (DPI). Only the GI rats showed an increase in CK and CK-MB, at 15 and 30 DPI, respectively. Anti-Toxocara spp. antibodies were detected by ELISA in infected animals. Despite of the presence of eosinophilic infiltrate in the heart of three infected animals, none larva was recovered from the organ neither by acid digestion nor by Baermann procedure. Eosinophilia was observed in both groups but there was no significant difference in the eosinophil counts between GI and GII (p = 0.2239). It is possible to consider that cardiac lesion is an eventual finding in murine model for toxocariasis.
Resumo:
Although human toxocariasis ranks among the most common zoonotic infections worldwide, it remains relatively unknown to the public. The causal agents are the nematode parasites Toxocara canis and T. cati, whose definitive hosts are dogs and cats, respectively. When embryonated eggs are accidentally ingested by humans, larvae hatch in the small intestine, penetrate the intestinal wall and migrate, via the bloodstream, to the liver, lungs, muscles, eye and central nervous system. Although most human infections are asymptomatic, two well-defined clinical syndromes are classically recognised: visceral larva migrans (a systemic disease caused by larval migration through major organs) and ocular larva migrans (a disease limited to the eyes and optic nerves). Two less-severe syndromes have recently been described, one mainly in children (covert toxocariasis) and the other mainly in adults (common toxocariasis). Here, the current laboratory diagnosis, epidemiology and main clinical features of both the systemic and ocular forms of human toxocariasis are reviewed. New developments in serological diagnosis are described, the available seroprevalence data are analysed, and the results of relevant clinical studies that have been published over the last decade are explored, to provide an updated overview of this neglected but highly prevalent human infection.
Resumo:
Objective: To evaluate the frequency of anti-Toxocara spp. antibodies in an adult healthy population. Methods: The study was performed by interviewing 253 blood donors, from 19 to 65 years of age, in a hematological centre in Presidente Prudente, São Paulo, southeast Brazil. A survey was applied to blood donors in order to evaluate the possible factors associated to the presence of antibodies, including individual (gender and age), socioeconomic (scholarship, familial income and sanitary facilities) and habit information (contact with soil, geophagy, onycophagy and intake of raw/undercooked meat) as well as the presence of dogs or cats in the household. ELISA test was run for detection of the anti-Toxocara spp. IgG antibodies. Bivariate analysis followed by logistic regression was performed to evaluate the potential risk factors associated to seropositivity. Results: The overall prevalence observed in this study was 8.7% (22/253). Contact with soil was the unique risk factor associated with the presence of antibodies (P=0.0178 ; OR=3.52; 95% CI=1.244-9.995) Conclusions. The results of this study reinforce the necessity in promoting preventive public health measures, even for healthy adult individual, particularly those related to the deworming of pets to avoid the soil contamination, and hygiene education of the population.
Resumo:
By the end of the 1960s, the argasid tick Ornithodoros peropteryx was described from larval specimens collected from the bat Peropteryx macrotis in Colombia. Since its original description, no additional record of O. peropteryx has been reported, and its post-larval stages have remained unknown. During July 2010, 18 larvae were collected from 9 bats (Centronycteris maximiliani), resulting in a mean infestation of 2.0 ± 2.2 ticks per bat (range 1–8). These bats were captured in a farm in northeastern Bolivia close to Guaporé River in the border with Brazil. Morphological examinations of the larvae revealed them to represent the species O. peropteryx. One engorged larva that was kept alive in the laboratory moulted to a nymph after 9 days. Fourteen days after the larval moulting, the nymph moulted to an adult female without taking any blood meal during the nymphal period. This adult female was used for a morphological description of the female stage of O. peropteryx. In addition, the larvae were used for a morphological redescription of this stage. One larva and two legs extirpated from the adult female were submitted to DNA extraction and PCR targeting a fragment of the mitochondrial 16S rDNA gene, which yielded DNA sequences at least 11 % divergent from any available argasid sequence in Genbank. We show that O. peropteryx ontogeny is characterized by a single, non-feeding, nymphal stage. This condition has never been reported for ticks.
Resumo:
By the end of the 1960s, the argasid tick Ornithodoros peropteryx was described from larval specimens collected from the bat Peropteryx macrotis in Colombia. Since its original description, no additional record of O. peropteryx has been reported, and its post-larval stages have remained unknown. During July 2010, 18 larvae were collected from 9 bats (Centronycteris maximiliani), resulting in a mean infestation of 2.0 ± 2.2 ticks per bat (range 1–8). These bats were captured in a farm in northeastern Bolivia close to Guapore´ River in the border with Brazil. Morphological examinations of the larvae revealed them to represent the species O. peropteryx. One engorged larva that was kept alive in the laboratory moulted to a nymph after 9 days. Fourteen days after the larval moulting, the nymph moulted to an adult female without taking any blood meal during the nymphal period. This adult female was used for a morphological description of the female stage of O. peropteryx. In addition, the larvae were used for a morphological redescription of this stage. One larva and two legs extirpated from the adult female were submitted to DNA extraction and PCR targeting a fragment of the mitochondrial 16S rDNA gene, which yielded DNA sequences at least 11 % divergent from any available argasid sequence in Genbank. We show that O. peropteryx ontogeny is characterized by a single, non-feeding, nymphal stage. This condition has never been reported for ticks.
Resumo:
Insect storage proteins accumulate at high levels during larval development of holometabolous insects. During metamorphosis they are degraded, supplying energy and amino acids for the completion of adult development. The genome of Culex quinquefasciatus contains eleven storage protein-coding genes. Their transcripts are more abundant in larvae than in pupae and in adults. In fact, only four of these genes are transcribed in adults, two of which in blood-fed adult females but not in adult males. Transcripts corresponding to all Cx. quinquefasciatus storage proteins were detected by RT-PCR, while mass spectrometric analysis of larval and pupal proteins identified all storage proteins with the exception of one encoded by Cq LSP1.8. Our results indicate that the identified Cx. quinquefasciatus storage protein-coding genes are candidates for identifying regulatory sequences for the development of molecular tools for vector control
Resumo:
Máster Oficial en Cultivos Marinos. VI Máster Internacional en Acuicultura. Trabajo presentado como requisito parcial para la obtención del Título de Máster Oficial en Cultivos Marinos, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)
Resumo:
La corvina (Argyrosomus regius) es un teleósteo de la familia Scianidae, que en los últimos años ha despertado un gran interés en acuicultura por su rápido crecimiento y la calidad de su carne. A su vez, se trata de una de las especies denominadas ?nuevas? que no pertenecen a la familia de los espáridos, y permite diversificar la oferta de la piscicultura marina. Las primeras aportaciones al estudio histológico del desarrollo larvario de esta especie fueron realizados por Jiménez et al. (2007). El presente trabajo incrementa la información existente, durante los dos primeros meses de vida de esta especie, lo que permitirá optimizar el cultivo larvario. Para ello se analiza la relación entre el desarrollo de sistema digestivo, la vejiga natatoria y el sistema visual. Los resultado demuestran que la corvina es una especie de rápido desarrollo y muy susceptible a las condiciones de cultivo durante su fase larvaria, condicionando éstas su crecimiento. A su vez el presente estudio ratifica que las características morfológicas y la organogénesis están directamente relacionadas con la longitud de la larva, independientemente de la edad de la misma.
Resumo:
Máster Universitario International en Acuicultura. Trabajo presentado como requisito parcial para la obtención del Título de Máster Universitario Internacional en Acuicultura, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)
Resumo:
[ES] El objetivo del presente estudio es aportar nuevos conocimientos sobre el desarrollo del sistema visual en los primeros estadios larvarios de dorada. El entendimiento de la ontogenia del sistema visual puede contribuir a la mejora en las condiciones de iluminación en el cultivo, las cuales podrían tener repercusiones en la obtención de larvas de mejor calidad y unas mayores tasas de supervivencia en el cultivo larvario. Las larvas de la mayoría de los peces son predadores visuales, lo que indica la gran importancia que juega el sistema visual en desarrollo (BLAXTER, 1986). El comportamiento trófico de la larva estará intimamente ligado al desarrollo de su capacidad visual, que depende directamente de la organogénesis de la retina. El estudio muestra que durante el desarrollo post-embrionario y en las primeras etapas de vida larvaria, el sistema visual de dorada Sparus aurata, histologicamente, es muy similar al descrito por otros autores para especies similares, Pagrus major (KAWAMURA,1984), Pagrus auratus (PANKHURST, 1996) y Pagrus pagrus (L. 1758 ) (ROO et al.,1998). El tercer día de vida de la larva es uno de los mas importantes, necesita estar preparada para capturar y digerir sus presas. En este día la larva muestra todas las estructuras necesarias para la función visual. El epitelio pigmentario bien definido, el músculo de la lente esta presente y el iris esta completamente formado. Las condiciones de iluminación que se utilizan en los criaderos comerciales difieren bastante de las condiciones naturales, pudiendo ser un factor a tener en cuenta para la obtención de una mejor calidad de larvas así como unas mejores tasas de supervivencia.