914 resultados para Monitoring system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A challenge for the clinical management of Parkinson's disease (PD) is the large within- and between-patient variability in symptom profiles as well as the emergence of motor complications which represent a significant source of disability in patients. This thesis deals with the development and evaluation of methods and systems for supporting the management of PD by using repeated measures, consisting of subjective assessments of symptoms and objective assessments of motor function through fine motor tests (spirography and tapping), collected by means of a telemetry touch screen device. One aim of the thesis was to develop methods for objective quantification and analysis of the severity of motor impairments being represented in spiral drawings and tapping results. This was accomplished by first quantifying the digitized movement data with time series analysis and then using them in data-driven modelling for automating the process of assessment of symptom severity. The objective measures were then analysed with respect to subjective assessments of motor conditions. Another aim was to develop a method for providing comparable information content as clinical rating scales by combining subjective and objective measures into composite scores, using time series analysis and data-driven methods. The scores represent six symptom dimensions and an overall test score for reflecting the global health condition of the patient. In addition, the thesis presents the development of a web-based system for providing a visual representation of symptoms over time allowing clinicians to remotely monitor the symptom profiles of their patients. The quality of the methods was assessed by reporting different metrics of validity, reliability and sensitivity to treatment interventions and natural PD progression over time. Results from two studies demonstrated that the methods developed for the fine motor tests had good metrics indicating that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients. The fine motor tests captured different symptoms; spiral drawing impairment and tapping accuracy related to dyskinesias (involuntary movements) whereas tapping speed related to bradykinesia (slowness of movements). A longitudinal data analysis indicated that the six symptom dimensions and the overall test score contained important elements of information of the clinical scales and can be used to measure effects of PD treatment interventions and disease progression. A usability evaluation of the web-based system showed that the information presented in the system was comparable to qualitative clinical observations and the system was recognized as a tool that will assist in the management of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The gap between what is known and what is practiced results in health service users not benefitting from advances in healthcare, and in unnecessary costs. A supportive context is considered a key element for successful implementation of evidence-based practices (EBP). There were no tools available for the systematic mapping of aspects of organizational context influencing the implementation of EBPs in low- and middle-income countries (LMICs). Thus, this project aimed to develop and psychometrically validate a tool for this purpose. Methods: The development of the Context Assessment for Community Health (COACH) tool was premised on the context dimension in the Promoting Action on Research Implementation in Health Services framework, and is a derivative product of the Alberta Context Tool. Its development was undertaken in Bangladesh, Vietnam, Uganda, South Africa and Nicaragua in six phases: (1) defining dimensions and draft tool development, (2) content validity amongst in-country expert panels, (3) content validity amongst international experts, (4) response process validity, (5) translation and (6) evaluation of psychometric properties amongst 690 health workers in the five countries. Results: The tool was validated for use amongst physicians, nurse/midwives and community health workers. The six phases of development resulted in a good fit between the theoretical dimensions of the COACH tool and its psychometric properties. The tool has 49 items measuring eight aspects of context: Resources, Community engagement, Commitment to work, Informal payment, Leadership, Work culture, Monitoring services for action and Sources of knowledge. Conclusions: Aspects of organizational context that were identified as influencing the implementation of EBPs in high-income settings were also found to be relevant in LMICs. However, there were additional aspects of context of relevance in LMICs specifically Resources, Community engagement, Commitment to work and Informal payment. Use of the COACH tool will allow for systematic description of the local healthcare context prior implementing healthcare interventions to allow for tailoring implementation strategies or as part of the evaluation of implementing healthcare interventions and thus allow for deeper insights into the process of implementing EBPs in LMICs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three studies were prepared and are presented in this document. The first, The Brazilian Financial Sector Institutional Context in the Transition to Sustainable Development looks at the legislation, regulation, and public policies aimed at socio-environmental themes related to the financial sector. The second study, Current Financing for the Green Economy in Brazil, provides an initial estimate of the financial assets already allocated to the green economy, as well as a methodological proposal for the survey and monitoring of the respective flow of assets. The third and final study looks at two important segments of the Brazilian economy and their process of transition to a greener economy: renewable energy and agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a low cost non-intrusive home energy monitor built on top of Non-Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already considered low cost alternatives to the big majority of existing commercial energy monitors but the goal here is to make its cost even lower by using a mini netbook as a whole in one solution. The mini netbook is installed in the homes main circuit breaker and computes power consumption by reading current and voltage from the built-in sound card. At the same time, feedback to the users is provided using the 11’’ LCD screen as well as other built-in I/O modules. Our meter is also capable of detecting changes in power and tries to find out which appliance lead to that change and it is being used as part of an eco-feedback platform that was build to study the long terms of energy eco-feedback in individuals. In this thesis the steps that were taken to come up with such a system are presented, from the basics of AC power measurements to the implementation of an event detector and classifier that was used to disaggregate the power load. In the last chapter results from some validation tests that have been performed are presented in order to validate the experiment. It is believed that such a system will not only be important as an energy monitor, but also as an open system than can be easily changed to accommodate and test new or existing nonintrusive load monitoring techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbiological monitoring of the water used for hemodialysis is extremely important, especially because of the debilitated immune system of patients suffering from chronic renal insufficiency. To investigate the occurrence and species diversity of bacteria in waters, water samples were collected monthly from a hemodialysis center in upstate São Paulo and tap water samples at the terminal sites of the distribution system was sampled repeatedly (22 times) at each of five points in the distribution system; a further 36 samples were taken from cannulae in 19 hemodialysis machines that were ready for the next patient, four samples from the reuse system and 13 from the water storage system. To identify bacteria, samples were filtered through 0.22 mu m-pore membranes; for mycobacteria, 0.45 mu m pores were used. Conventional microbiological and molecular methods were used in the analysis. Bacteria were isolated from the distribution system (128 isolates), kidney machine water (43) and reuse system (3). Among these isolates, 32 were Gram-positive rods, 120 Gram-negative rods, 20 Gram-positive cocci and 11 mycobacteria. We propose the continual monitoring of the water supplies in hemodialysis centers and the adoption of effective prophylactic measures that minimize the exposure of these immunodeficient patients to contaminated sources of water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.