1000 resultados para Molecualar data
Resumo:
This chapter discusses the methodological aspects and empirical findings of a large-scale, funded project investigating public communication through social media in Australia. The project concentrates on Twitter, but we approach it as representative of broader current trends toward the integration of large datasets and computational methods into media and communication studies in general, and social media scholarship in particular. The research discussed in this chapter aims to empirically describe networks of affiliation and interest in the Australian Twittersphere, while reflecting on the methodological implications and imperatives of ‘big data’ in the humanities. Using custom network crawling technology, we have conducted a snowball crawl of Twitter accounts operated by Australian users to identify more than one million users and their follower/followee relationships, and have mapped their interconnections. In itself, the map provides an overview of the major clusters of densely interlinked users, largely centred on shared topics of interest (from politics through arts to sport) and/or sociodemographic factors (geographic origins, age groups). Our map of the Twittersphere is the first of its kind for the Australian part of the global Twitter network, and also provides a first independent and scholarly estimation of the size of the total Australian Twitter population. In combination with our investigation of participation patterns in specific thematic hashtags, the map also enables us to examine which areas of the underlying follower/followee network are activated in the discussion of specific current topics – allowing new insights into the extent to which particular topics and issues are of interest to specialised niches or to the Australian public more broadly. Specifically, we examine the Twittersphere footprint of dedicated political discussion, under the #auspol hashtag, and compare it with the heightened, broader interest in Australian politics during election campaigns, using #ausvotes; we explore the different patterns of Twitter activity across the map for major television events (the popular competitive cooking show #masterchef, the British #royalwedding, and the annual #stateoforigin Rugby League sporting contest); and we investigate the circulation of links to the articles published by a number of major Australian news organisations across the network. Such analysis, which combines the ‘big data’-informed map and a close reading of individual communicative phenomena, makes it possible to trace the dynamic formation and dissolution of issue publics against the backdrop of longer-term network connections, and the circulation of information across these follower/followee links. Such research sheds light on the communicative dynamics of Twitter as a space for mediated social interaction. Our work demonstrates the possibilities inherent in the current ‘computational turn’ (Berry, 2010) in the digital humanities, as well as adding to the development and critical examination of methodologies for dealing with ‘big data’ (boyd and Crawford, 2011). Out tools and methods for doing Twitter research, released under Creative Commons licences through our project Website, provide the basis for replicable and verifiable digital humanities research on the processes of public communication which take place through this important new social network.
Resumo:
Relative abundance data is common in the life sciences, but appreciation that it needs special analysis and interpretation is scarce. Correlation is popular as a statistical measure of pairwise association but should not be used on data that carry only relative information. Using timecourse yeast gene expression data, we show how correlation of relative abundances can lead to conclusions opposite to those drawn from absolute abundances, and that its value changes when different components are included in the analysis. Once all absolute information has been removed, only a subset of those associations will reliably endure in the remaining relative data, specifically, associations where pairs of values behave proportionally across observations. We propose a new statistic φ to describe the strength of proportionality between two variables and demonstrate how it can be straightforwardly used instead of correlation as the basis of familiar analyses and visualization methods.
Resumo:
This presentation will provide an overview of the load applied on the residuum of transfemoral amputees fitted with an osseointegrated fixation during (A) rehabilitation, including static and dynamic load bearing exercises (e.g., rowing, adduction, abduction, squat, cycling, walking with aids), and (B) activities of daily living including standardized activities (e.g., level walking in straight line and around a circle, ascending and descending slopes and stairs) and activities in real world environments.
Resumo:
The conventional method of attachment of prosthesis involves on a socket. A new method relying on osseointegrated fixation is emerging. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of transfemoral amputees fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this preliminary study was to present the key temporal and spatial gait characteristics.
Resumo:
This study aimed at presenting the intra-tester reliability of the static load bearing exercises (LBEs) performed by individuals with transfemoral amputation (TFA) fitted with an osseointegrated implant to stimulate the bone remodelling process. There is a need for a better understanding of the implementation of these exercises particularly the reliability. The intra-tester reliability is discussed with a particular emphasis on inter-load prescribed, inter-axis and inter-component reliabilities as well as the effect of body weight normalisation. Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. Reliability of loading variables was assessed using intraclass correlation coefficients (ICCs) and percentage standard error of measurement values (%SEMs). The ICCs of all variables were above 0.9 and the %SEM values ranged between 0 and 87%. This study showed a high between-participants’ variance highlighting the lack of loading consistency typical of symptomatic population as well as a high reliability between the loading sessions indicating a plausible correct repetition of the LBE by the participants. However, these outcomes must be understood within the framework of the proposed experimental protocol.
Resumo:
Road traffic crashes are an alarming public health issue in Oman, despite ongoing improvements in traffic law enforcement practices and technology. One of the main target groups for road safety in Oman are young drivers aged 17-25 years. This report provides an overview of the characteristics of crashes in Oman involving young drivers (17-25 years) between 1st January 2009 and 31st December 2011. Although, young drivers aged 17-25 years comprise around 17% of all licence holders in Oman, they represented more than one third of all drivers involved in road traffic crashes in the country. A total of 11,101 young drivers (17-25 years) were involved in registered crashes during the study period. From this, 7,727 young drivers (69.6%) were found to be the cause of the crashes...
Resumo:
The lack of adequate disease surveillance systems in Ebola-affected areas has both reduced the ability to respond locally and has increased global risk. There is a need to improve disease surveillance in vulnerable regions, and digital surveillance could present a viable approach.
Resumo:
Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
There is a current lack of understanding regarding the use of unregistered vehicles on public roads and road-related areas, and the links between the driving of unregistered vehicles and a range of dangerous driving behaviours. This report documents the findings of data analysis conducted to investigate the links between unlicensed driving and the driving of unregistered vehicles, and is an important initial undertaking into understanding these behaviours. This report examines de-identified data from two sources: crash data; and offence data. The data was extracted from the Queensland Department of Transport and Main Roads (TMR) databases and covered the period from 2003 to 2008.
Resumo:
Introduction A pedagogical relationship - the relationship produced through teaching and learning - is, according to phenomenologist Max van Maanen, ‘the most profound relationship an adult can have with a child’ (van Maanen 1982). But what does it mean for a teacher to have a ‘profound’ relationship with a student in digital times? What, indeed, is an optimal pedagogical relationship at a time when the exponential proliferation and transformation of information across the globe is making for unprecedented social and cultural change? Does it involve both parties in a Facebook friendship? Being snappy with Snapchat? Tumbling around on Tumblr? There is now ample evidence of a growing trend to displace face-to-face interaction by virtual connections. One effect of these technologically mediated relationships is that a growing number of young people experience relationships as ‘mile-wide, inch-deep’ phenomena. It is timely, in this context, to explore how pedagogical relationships are being transmuted by Big Data, and to ask about the implications this has for current and future generations of professional educators.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
Large volumes of heterogeneous health data silos pose a big challenge when exploring for information to allow for evidence based decision making and ensuring quality outcomes. In this paper, we present a proof of concept for adopting data warehousing technology to aggregate and analyse disparate health data in order to understand the impact various lifestyle factors on obesity. We present a practical model for data warehousing with detailed explanation which can be adopted similarly for studying various other health issues.
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.