965 resultados para Modulation of effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selektiivisten estrogeenireseptorin muuntelijoiden (serm) vaikutus rintasyöpäsolujen ja luun solujen kuolemaan Selektiiviset estrogeenireseptorin muuntelijat (SERMit) ovat ryhmä kemialliselta rakenteeltaan erilaisia yhdisteitä jotka sitoutuvat solunsisäisiin estrogeenireseptoreihin toimien joko estrogeenin kaltaisina yhdisteinä tai estrogeenin vastavaikuttajina. Tamoksifeeni on SERM –yhdiste, jota on jo pitkään käytetty estrogeenireseptoreita (ER) ilmentävän rintasyövän lääkehoidossa. Tamoksifeeni sekä estää rintasyöpäsolujen jakaantumista että toisaalta aikaansaa niiden apoptoosin eli ohjelmoidun solukuoleman muuntelemalla ER-välitteisesti kohdesolun geenien ilmentymistä. Viimeaikaiset tutkimustulokset ovat kuitenkin osoittaneet tamoksifeenilla olevan myös nopeampia, nongenomisia vaikutusmekanismeja. Tässä väitöskirjatyössä tutkimme niitä nopeita vaikutusmekanismeja joiden avulla tamoksifeeni vaikuttaa rintasyöpäsolujen elinkykyyn. Osoitamme että tamoksifeeni farmakologisina pitoisuuksina aikaansaa nopean mitokondriaalisen solukuolemaan johtavan signallointireitin aktivoitumisen rintasyöpäsoluissa. Tämän lisäksi tutkimme myös tamoksifeenin aiheuttamaan mitokondriovaurioon johtavia tekijöitä. Tutkimustuloksemme osoittavat että ER-positiivisissa rintasyöpäsoluissa tamoksifeeni indusoi pitkäkestoisen ERK-kinaasiaktivaation, joka voidaan estää 17-beta-estradiolilla. Tamoksifeenin aikaansaama nopea solukuolema on pääosin ER:sta riippumaton tapahtuma, mutta siihen voidaan vaikuttaa myös ER-välitteisin mekanismein. Sen sijaan epidermaalisen kasvutekijäreseptorin (EGFR) voitiin osoittaa osallistuvan tamoksifeenin nopeiden vaikutusten välittämiseen. Tämän lisäksi vertailimme myös estradiolin ja eri SERM-yhdisteiden kykyä suojata apoptoosilta käyttämällä osteoblastiperäisiä soluja. Pytyäksemme vertailemaan ER-isotyyppien roolia eri yhdisteiden suojavaikutuksissa, transfektoimme U2OS osteosarkoomasolulinjan ilmentämään pysyvästi joko ERalfaa tai ERbetaa. Tulostemme mukaan sekä estradioli että uusi SERM-yhdiste ospemifeeni suojaavat osteoblastin kaltaisia soluja etoposidi-indusoidulta apoptoosilta. Sekä ERalfa että ERbeta pystyivät välittämään suojavaikutusta, joskin vaikutukset erosivat toisistaan. Lisäksi havaitsimme edellä mainitun suojavaikutuksen olevan yhteydessä muutoksiin solujen sytokiiniekspressiossa. Tietoa SERM-yhdisteiden anti-ja proapoptoottisten vaikutusmekanismeista eri kohdekudoksissa voidaan mahdollisesti hyödyntää kehiteltäessä uusia kudosspesifisiä SERM-yhdisteitä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to investigate the effect of administration of supraphysiological âcaroteno on biological parameters (ectoscopy and blood pressure), laboratory (malondialdehyde) and histological (liver and carotid arteries) of spontaneously hypertensive rats prone to stroke (SHR-sp).Methods: we used 36 male rats were divided into three groups, each containing 12 rats Wistar, SHR and SHR-sp, subdivided into six control animals and six animals treated with supraphysiological doses of âcaroteno for two periods of ten weeks interspersed with one week interruption. In the experiment were assessed daily physical examination and blood pressure (plethysmography). At sacrifice, blood was collected for measurement of serum malondialdehyde, liver and carotid arteries for histological examination.Results: temporary change in color of the fur, decreased significantly (p<0.0001) blood pressure (20mg supplementation âcaroteno) and serum levels of malondialdehyde (p<0.05) and increased amount of elastic fibers in the carotid wall of SHR and SHR-sp.Conclusion: supplementation of supraphysiological âcaroteno caused no toxic effects, showed positive response in the modulation of blood pressure and lower serum malondialdehyde. No significant morphological changes were found in both groups, except an increase in the number of elastic fibers in the muscle layer carotid suggesting elastosis in SHR and SHR-sp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 µl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P < 0.05), whereas the doses of 0.5 (P < 0.05) and 5.0 ng (P < 0.01) NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05) and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK) and L-arginine treatment both alone and in combination on blood pressure (BP), and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C) hypertension, 2K1C+ALSK (ALSK), 2K1C+L-arginine (L-arg), and 2K1C+ALSK+L-arginine (ALSK+L-arg) treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME) increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reinforcement omission effects have been traditionally interpreted in terms of: behavioral facilitation after reinforcement omission induced by primary frustration or behavioral suppression after reinforcement delivery induced by postconsummatory states. The studies reviewed here indicate that amygdala is involved in modulation of these effects. However, the fact that amygdala lesions, extensive or selective, can eliminate, reduce and enhance the omission effects makes it difficult to understand how it is the exact nature of their involvement. The amygdala is related to several functions that depend on its connections with other brain systems. Thus, it is necessary to consider the involvement of a more complex neural network in the modulation of the reinforcement omission effects. The connection of amygdala subareas to cortical and subcortical structures may be involved in this modulation since they also are linked to processes related to reward and expectancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study covers an area of great importance in the research of breast cancer, related to the study of the effects of both estrogens (E2) and anti-estrogens (Tamoxifen) on chromosomes and of modulation of gene expression. Considering that breast cancer is a very heterogeneous disease and that patients respond differently to treatment, the identification of chromosomal abnormalities as well as genes responsive to 17β-estradiol (E2) and Tamoxifen (TAM) could provide the necessary framework to understand the complex effects of this hormone in target cells and could explain, at least in part, the development of cellular resistance to TAM treatment and the subsequent best therapeutic option. In this order of ideas, we determined the effects of E2 and TAM on the chromosomes and on the modulation of gene expression in four breast cancer cell lines, which represent three of the five subtypes of breast cancer known at present. The results are presented in six chapters - each one has a group of the results achieved around the cytogenetic characteristics and gene expression profiles of four cell lines and the effects of E2 and TAM incubation on those. The first chapter describes the main features of breast cancer, furthering the use and effects of E2 and TAM treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function, using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of IL-1β, IL-6, TNF-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production, but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte-depletion significantly reduced the impact of LcS on lymphocyte activation, cytokine production and NK cell activity. In conclusion, LcS preferentially activated cytotoxic lymphocytes in both the innate and specific immune system, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both pro-inflammatory and anti-inflammatory cytokine production in the absence of LPS, but inhibited LPS-induced cytokine production in some cases. Monocytes play an important role in LcS-induced immunological responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7-O-beta-D-glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.