894 resultados para Model-Based Design
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
This research project focused upon the design strategies adopted by expert and novice designers. It was based upon a desire to compare the design problem solving strategies of novices, in this case key stage three pupils studying technolgy within the United Kingdom National Curriculum, with designers who could be considered to have developed expertise. The findings helped to provide insights into potential teaching strategies to suit novice designers. Verbal protocols were made as samples of expert and novice designers solved a design problem and talked aloud as they worked. The verbalisations were recorded on video tape. The protocols were transcribed and segmented, with each segment being assigned to a predetermined coding system which represented a model of design problem solving. The results of the encoding were analysed and consideration was also given to the general design strategy and heuristics used by the expert and novice designers. The drawings and models produced during the generation of the protocols were also analysed and considered. A number of significant differences between the problem solving strategies adopted by the expert and novice designers were identified. First of all, differences were observed in the way expert and novice designers used the problem statement and solution validation during the process. Differences were also identified in the way holistic solutions were generated near the start of the process, and also in the cycles of exploration and the processes of integration. The way design and technological knowledge was used provided further insights into the differences between experts and novices, as did the role of drawing and modelling during the process. In more general terms, differences were identified in the heuristics and overall design strategies adopted by the expert and novice designers. The above findings provided a basis for discussing teaching strategies appropriate for novice designers. Finally, opportunities for future research were discussed.
Resumo:
The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.
Resumo:
In this thesis, I view the historical background of Zimbabwe to show the patterns of traditional life that existed prior to settlerism. The form, nature, pace and impact of settlerism and colonialism up to the time of independence are also discussed to show how they affected the health of the population and the pace of development of the country. The political, social and economic underdevelopment of the African people that occurred in Zimbabwe prior to independence was a result of deliberate, politically motivated and controlled policy initiatives. These led to inequatable, inadequate, inappropriate and inaccessible health care provision. It is submitted that since it was the politics that determined the pace of underdevelopment, it must be the politics that must be at the forefront of the development strategy adopted. In the face of the amed conflict that existed in Zimbabwe, existing frameworks of analyses are shown to be inadequate for planning purposes because of their inability to provide indications about the stability of future outcomes. The Metagame technique of analysis of options is proposed as a methology that can be applied in such situations. It rejects deterministic predicative models as misleading and advocates an interactive model based on objective and subjective valuation of human behaviour. In conclusion, the search for stable outcomes rather than optimal and best solutions strategies is advocated in decision making in organisations of all sizes.
Resumo:
The work presented in this thesis is concerned with the dynamic behaviour of structural joints which are both loaded, and excited, normal to the joint interface. Since the forces on joints are transmitted through their interface, the surface texture of joints was carefully examined. A computerised surface measuring system was developed and computer programs were written. Surface flatness was functionally defined, measured and quantised into a form suitable for the theoretical calculation of the joint stiffness. Dynamic stiffness and damping were measured at various preloads for a range of joints with different surface textures. Dry clean and lubricated joints were tested and the results indicated an increase in damping for the lubricated joints of between 30 to 100 times. A theoretical model for the computation of the stiffness of dry clean joints was built. The model is based on the theory that the elastic recovery of joints is due to the recovery of the material behind the loaded asperities. It takes into account, in a quantitative manner, the flatness deviations present on the surfaces of the joint. The theoretical results were found to be in good agreement with those measured experimentally. It was also found that theoretical assessment of the joint stiffness could be carried out using a different model based on the recovery of loaded asperities into a spherical form. Stepwise procedures are given in order to design a joint having a particular stiffness. A theoretical model for the loss factor of dry clean joints was built. The theoretical results are in reasonable agreement with those experimentally measured. The theoretical models for the stiffness and loss factor were employed to evaluate the second natural frequency of the test rig. The results are in good agreement with the experimentally measured natural frequencies.
Resumo:
This thesis encompasses an investigation of the behaviour of concrete frame structure under localised fire scenarios by implementing a constitutive model using finite-element computer program. The investigation phase included properties of material at elevated temperature, description of computer program, thermal and structural analyses. Transient thermal properties of material have been employed in this study to achieve reasonable results. The finite-element computer package of ANSYS is utilized in the present analyses to examine the effect of fire on the concrete frame under five various fire scenarios. In addition, a report of full-scale BRE Cardington concrete building designed to Eurocode2 and BS8110 subjected to realistic compartment fire is also presented. The transient analyses of present model included additional specific heat to the base value of dry concrete at temperature 100°C and 200°C. The combined convective-radiation heat transfer coefficient and transient thermal expansion have also been considered in the analyses. For the analyses with the transient strains included, the constitutive model based on empirical formula in a full thermal strain-stress model proposed by Li and Purkiss (2005) is employed. Comparisons between the models with and without transient strains included are also discussed. Results of present study indicate that the behaviour of complete structure is significantly different from the behaviour of individual isolated members based on current design methods. Although the current tabulated design procedures are conservative when the entire building performance is considered, it should be noted that the beneficial and detrimental effects of thermal expansion in complete structures should be taken into account. Therefore, developing new fire engineering methods from the study of complete structures rather than from individual isolated member behaviour is essential.
Resumo:
Background: We introduced a series of computer-supported workshops in our undergraduate statistics courses, in the hope that it would help students to gain a deeper understanding of statistical concepts. This raised questions about the appropriate design of the Virtual Learning Environment (VLE) in which such an approach had to be implemented. Therefore, we investigated two competing software design models for VLEs. In the first system, all learning features were a function of the classical VLE. The second system was designed from the perspective that learning features should be a function of the course's core content (statistical analyses), which required us to develop a specific-purpose Statistical Learning Environment (SLE) based on Reproducible Computing and newly developed Peer Review (PR) technology. Objectives: The main research question is whether the second VLE design improved learning efficiency as compared to the standard type of VLE design that is commonly used in education. As a secondary objective we provide empirical evidence about the usefulness of PR as a constructivist learning activity which supports non-rote learning. Finally, this paper illustrates that it is possible to introduce a constructivist learning approach in large student populations, based on adequately designed educational technology, without subsuming educational content to technological convenience. Methods: Both VLE systems were tested within a two-year quasi-experiment based on a Reliable Nonequivalent Group Design. This approach allowed us to draw valid conclusions about the treatment effect of the changed VLE design, even though the systems were implemented in successive years. The methodological aspects about the experiment's internal validity are explained extensively. Results: The effect of the design change is shown to have substantially increased the efficiency of constructivist, computer-assisted learning activities for all cohorts of the student population under investigation. The findings demonstrate that a content-based design outperforms the traditional VLE-based design. © 2011 Wessa et al.
Resumo:
Molecular dynamics (MD) has been used to identify the relative distribution of dysprosium in the phosphate glass DyAl0.30P3.05O9.62. The MD model has been compared directly with experimental data obtained from neutron diffraction to enable a detailed comparison beyond the total structure factor level. The MD simulation gives Dy ... Dy correlations at 3.80(5) and 6.40(5) angstrom with relative coordination numbers of 0.8(1) and 7.3(5), thus providing evidence of minority rare-earth clustering within these glasses. The nearest neighbour Dy-O peak occurs at 2.30 angstrom with each Dy atom having on average 5.8 nearest neighbour oxygen atoms. The MD simulation is consistent with the phosphate network model based on interlinked PO4 tetrahedra where the addition of network modifiers Dy3+ depolymerizes the phosphate network through the breakage of P-(O)-P bonds whilst leaving the tetrahedral units intact. The role of aluminium within the network has been taken into explicit account, and A1 is found to be predominantly (78 tetrahedrally coordinated. In fact all four A1 bonds are found to be to P (via an oxygen atom) with negligible amounts of Al-O-Dy bonds present. This provides an important insight into the role of Al additives in improving the mechanical properties of these glasses.
Resumo:
Purpose – There appears to be an ever-insatiable demand from markets for organisations to improve their products and services. To meet this, there is a need to provide business process improvement (BPI) methodologies that are holistic, structured and procedural. Therefore, this paper describes research that has formed and tested a generic and practical methodology termed model-based and integrated process improvement (MIPI) to support the implementation of BPI; and to validate its effectiveness in organisations. This methodology has been created as an aid for practitioners within organisations. Design/methodology/approach – The research objectives were achieved by: reviewing and analysing current methodologies, and selecting a few frameworks against key performance indicators. Using a refined Delphi approach and semi-structured interview with the “experts” in the field. Intervention, case study and process research approach to evaluating a methodology. Findings – The BPI methodology was successfully formed and applied by the researcher and directly by the companies involved against the criteria of feasibility, usability and usefulness. Research limitations/implications – The paper has demonstrated a new knowledge on how to systematically assess a BPI methodology in practice. Practical implications – Model-based and integrated process improvement methodology (MIPI) methodology offers the practitioner (experienced and novice) a set of step-by-step aids necessary to make informed, consistent and efficient changes to business processes. Originality/value – The novelty of this research work is the creation of a holistic workbook-based methodology with relevant tools and techniques. It extends the capabilities of existing methodologies.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
Uncertainty can be defined as the difference between information that is represented in an executing system and the information that is both measurable and available about the system at a certain point in its life-time. A software system can be exposed to multiple sources of uncertainty produced by, for example, ambiguous requirements and unpredictable execution environments. A runtime model is a dynamic knowledge base that abstracts useful information about the system, its operational context and the extent to which the system meets its stakeholders' needs. A software system can successfully operate in multiple dynamic contexts by using runtime models that augment information available at design-time with information monitored at runtime. This chapter explores the role of runtime models as a means to cope with uncertainty. To this end, we introduce a well-suited terminology about models, runtime models and uncertainty and present a state-of-the-art summary on model-based techniques for addressing uncertainty both at development- and runtime. Using a case study about robot systems we discuss how current techniques and the MAPE-K loop can be used together to tackle uncertainty. Furthermore, we propose possible extensions of the MAPE-K loop architecture with runtime models to further handle uncertainty at runtime. The chapter concludes by identifying key challenges, and enabling technologies for using runtime models to address uncertainty, and also identifies closely related research communities that can foster ideas for resolving the challenges raised. © 2014 Springer International Publishing.
Resumo:
The Teallach project has adapted model-based user-interface development techniques to the systematic creation of user-interfaces for object-oriented database applications. Model-based approaches aim to provide designers with a more principled approach to user-interface development using a variety of underlying models, and tools which manipulate these models. Here we present the results of the Teallach project, describing the tools developed and the flexible design method supported. Distinctive features of the Teallach system include provision of database-specific constructs, comprehensive facilities for relating the different models, and support for a flexible design method in which models can be constructed and related by designers in different orders and in different ways, to suit their particular design rationales. The system then creates the desired user-interface as an independent, fully functional Java application, with automatically generated help facilities.
Resumo:
We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.
Resumo:
The purpose of the current paper is to present the developed methodology of viable model based enterprise management, which is needed for modern enterprises to survive and growth in the information age century. The approach is based on Beer’s viable system model and uses it as a basis of the information technology implementation and development. The enterprise is viewed as a cybernetic system which functioning is controlled from the same rules as for every living system.
Resumo:
There have been multifarious approaches in building expert knowledge in medical or engineering field through expert system, case-based reasoning, model-based reasoning and also a large-scale knowledge-based system. The intriguing factors with these approaches are mainly the choices of reasoning mechanism, ontology, knowledge representation, elicitation and modeling. In our study, we argue that the knowledge construction through hypermedia-based community channel is an effective approach in constructing expert’s knowledge. We define that the knowledge can be represented as in the simplest form such as stories to the most complex ones such as on-the-job type of experiences. The current approaches of encoding experiences require expert’s knowledge to be acquired and represented in rules, cases or causal model. We differentiate the two types of knowledge which are the content knowledge and socially-derivable knowledge. The latter is described as knowledge that is earned through social interaction. Intelligent Conversational Channel is the system that supports the building and sharing on this type of knowledge.