929 resultados para Model Predictive Current Control
Resumo:
Aim: The aim of this report was to assess the strength and influence of periodontitis as a possible risk factor for pre-term birth (PTB) in a cohort of 81 primiparous Croatian mothers aged 18-39 years. Methods: PTB cases (n=17; mean age 25 +/- 2.9 years; age range 20-33 years) were defined as spontaneous delivery after less than 37 completed weeks of gestation that were followed by spontaneous labour or spontaneous rupture of membranes. Controls (full-time births) were normal births at or after 37 weeks of gestation (n=64; mean age 25 +/- 2.9 years; age range 19-39 years). Information on known risk factors and obstetric factors included the current pregnancy history, maternal age at delivery, pre-natal care, nutritional status, tobacco use, alcohol use, genitourinary infections, vaginosis, gestational age, and birth weight. Full-mouth periodontal examination was performed on all mothers within 2 days of delivery. Results: PTB cases had significantly worse periodontal status than controls (p=0.008). Multivariate logistic regression model, after controlling for other risk factors, demonstrated that periodontal disease is a significant independent risk factor for PTB, with an adjusted odds ratio of 8.13 for the PTB group (95% confidence interval 2.73-45.9). Conclusion: Periodontal disease represents a strong, independent, and clinically significant risk factor for PTB in the studied cohort. There are strong indicators that periodontal therapy should form a part of preventive prenatal care in Croatia.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We have previously shown how such distortions in perceived edge blur may be explained by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. To test this model further, we measured the sharpening of drifting, periodic patterns over a large range of contrasts, blur widths, and speeds Human Vision. The results indicate that, while sharpening increased with speed, it was practically invariant with contrast. This contrast invariance cannot be explained by a fixed compressive nonlinearity since that predicts almost no sharpening at low contrasts.We show by computational modelling of spatiotemporal responses that, if a dynamic contrast gain control precedes the static nonlinear transducer, then motion sharpening, its speed dependence, and its invariance with contrast can be predicted with reasonable accuracy.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.
Resumo:
The work described in the following pages was carried out at various sites in the Rod Division of the Delta Metal Company. Extensive variation in the level of activity in the industry during the years 1974 to I975 had led to certain inadequacies being observed 1n the traditional cost control procedure. In an attempt to remedy this situation it was suggested that a method be found of constructing a system to improve the flexibility of cost control procedures. The work involved an assimilation of the industrial and financial environment via pilot studies which would later prove invaluable to home in on the really interesting and important areas. Weaknesses in the current systems which came to light made the methodology of data collection and the improvement of cost control and profit planning procedures easier to adopt. Because of the requirements of the project to investigate the implications of Cost behaviour for profit planning and control, the next stage of the research work was to utilise the on-site experience to examine at a detailed level the nature of cost behaviour. The analysis of factory costs then showed that certain costs, which were the most significant exhibited a stable relationship with respect to some known variable, usually a specific measure of Output. These costs were then formulated in a cost model, to establish accurate standards in a complex industrial setting in order to provide a meaningful comparison against which to judge actual performance. The necessity of a cost model was •reinforced by the fact that the cost behaviour found to exist was, in the main, a step function, and this complex cost behaviour, the traditional cost and profit planning procedures could not possibly incorporate. Already implemented from this work is the establishment of the post of information officer to co-ordinate data collection and information provision.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
Manufacturing planning and control systems are fundamental to the successful operations of a manufacturing organisation. 10 order to improve their business performance, significant investment is made by companies into planning and control systems; however, not all companies realise the benefits sought Many companies continue to suffer from high levels of inventory, shortages, obsolete parts, poor resource utilisation and poor delivery performance. This thesis argues that the fit between the planning and control system and the manufacturing organisation is a crucial element of success. The design of appropriate control systems is, therefore, important. The different approaches to the design of manufacturing planning and control systems are investigated. It is concluded that there is no provision within these design methodologies to properly assess the impact of a proposed design on the manufacturing facility. Consequently, an understanding of how a new (or modified) planning and control system will perform in the context of the complete manufacturing system is unlikely to be gained until after the system has been implemented and is running. There are many modelling techniques available, however discrete-event simulation is unique in its ability to model the complex dynamics inherent in manufacturing systems, of which the planning and control system is an integral component. The existing application of simulation to manufacturing control system issues is limited: although operational issues are addressed, application to the more fundamental design of control systems is rarely, if at all, considered. The lack of a suitable simulation-based modelling tool does not help matters. The requirements of a simulation tool capable of modelling a host of different planning and control systems is presented. It is argued that only through the application of object-oriented principles can these extensive requirements be achieved. This thesis reports on the development of an extensible class library called WBS/Control, which is based on object-oriented principles and discrete-event simulation. The functionality, both current and future, offered by WBS/Control means that different planning and control systems can be modelled: not only the more standard implementations but also hybrid systems and new designs. The flexibility implicit in the development of WBS/Control supports its application to design and operational issues. WBS/Control wholly integrates with an existing manufacturing simulator to provide a more complete modelling environment.