855 resultados para Micro Rotary Ultrasonic Machining
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.
Resumo:
The development of chalcogenide glasses fibers for application in the infrared wavelength region between 1 and 10 μm is a big opportunity. More particularly, the possibility to generate efficient non linear effects above 2 μm is a real challenge. We present in this work the elaboration and optical characterizations of suspended core microstructured optical fibers elaborated from the As2S3 chalcogenide glass. As an alternative to the stack and draw process a mechanical machining has been used to the elaboration of the preforms. The drawing of these preforms into fibers allows reaching a suspended core geometry, in which a 2.5 μm diameter core is linked to the fiber clad region by three supporting struts. The zero dispersion wavelength is thus shifted towards 2 μm. At 1.55 μm our fibers exhibit a dispersion around -250 ps/nm/km. Their background level of losses is below 0,5 dB/m. By pumping them at 1.55 μm with a ps source, we observe self phase modulation as well as Raman generation. Finally a strong spectral enlargement is obtained with an average output power of - 5 dbm. © 2010 SPIE.
Resumo:
The aim of this study was to evaluate the effectiveness of manual and rotary instrumentation techniques for removing root fillings after different storage times. Twenty-four canals from palatal roots of human maxillary molars were instrumented and filled with gutta-percha and zinc-oxide eugenol-based sealer (Endofill), and were stored in saline for 6 years. Non-aged control specimens were treated in the same manner and stored for 1 week. All canals were retreated using hand files or ProTaper Universal NiTi rotary system. Radiographs were taken to determine the amount of remaining material in the canals. The roots were vertically split, the halves were examined with a clinical microscope and the obtained images were digitized. The images were evaluated with AutoCAD software and the percentage of residual material was calculated. Data were analyzed with two-way ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) between the manual and rotary techniques for filling material removal regardless the ageing effect on endodontic sealers. When only the age of the filling material was analyzed microscopically, non-aged fillings that remained on the middle third of the canals presented a higher percentage of material remaining (p<0.05) compared to the aged sealers and to the other thirds of the roots. The apical third showed a higher percentage of residual filling material in both radiographic and microscopic analysis when compared to the other root thirds. In conclusion, all canals presented residual filling material after endodontic retreatment procedures. Microscopic analysis was more effective than radiographs for detection of residual filling material.
Resumo:
This study evaluated the efficacy of 2 types of rotary instruments employed in association with sodium hypochlorite (NaOCl) or EDTA in removing calcium hydroxide (CH) residues from root canals dentin walls. Forty-two mandibular human incisors were instrumented with the ProTaper System up to F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA and filled with a CH intracanal dressing. After 7 days, the CH dressing was removed using 4 techniques: NiTi rotary instrument size 25, 0.06 taper (K3 Endo) and irrigation with 17% EDTA (Group 1), NiTi rotary F1 instrument (ProTaper) and irrigation with 17% EDTA (Group 2), NiTi rotary instrument size 25, 0.06 taper and irrigation with 2.5% NaOCl (Group 3) and NiTi rotary F1 instrument and irrigation with 2.5% NaOCl (Group 4). Two roots without intracanal dressing were used as negative controls. Teeth were evaluated by scanning electron microscopy, in the cervical and apical canal thirds. None of the techniques removed the CH dressing completely. In the apical and cervical thirds, F1 instrument was better than instrument size 25, 0.06 taper in removing CH residues (p<0.05), regardless of the final irrigating solution. No difference was found between the irrigating solutions in the groups of F1 instrument and of instrument size 25, 0.06 taper (p>0.05). The negative controls had no CH residues on the dentin walls. In conclusion, the ProTaper F1 instrument was better than K3 Endo instrument size 25, 0.06 taper in the removal of CH intracanal medication, regardless of irrigating solution used.
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
Incluye Bibliografía
Resumo:
Incluye bibliografía
Resumo:
Incluye bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía