998 resultados para Methane Adsorption
Resumo:
CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.
Resumo:
La-0.8Sr(0).2CoO(3) (LSCO) oxide powder was prepared using the adsorption properties of cellulose. The preparation process was studied by XRD, FTIR, TG-DTA and CO2-TPD techniques. The results of XRD, IR and TG-DTA testified that cellulose could successfully reserve the homogeneity of the solution system to the solid precursor. During the early stage of pyrolysis, cellulose was partially oxidized, and some COO- groups appeared in its texture, which were then complexed with the adsorbed metal ions, and effectively suppressed the aggregation of metal ions. Formation of a pure perovskite and the properties of the powder resulted were found to be significantly influenced by the cellulose to metal nitrate ratio. Also the properties of the resulting powder were greatly influenced by the calcination conditions. If the produced carbon dioxide could not be eluted in time, carbonate would be formed in the bulk. Hence, a high calcination temperature (> 800 degreesC) was needed to acquire a pure phase LSCO. At optimized conditions, nano-crystal LSCO could be obtained at as low as 500 degreesC.
Resumo:
Adsorption and interaction of H2S/SO2 on titania as well as on alumina for comparison has been studied by temperature programmed desorption (TPD), infrared (IR) spectroscopy and temperature programmed electronic conductivity (TPEC) techniques. It was found that the adsorption of both H2S acid SO2 on TiO2 is much greater than on Al2O3. The electronic conductivity of TiO2 measured by TPEC varies significantly as adsorption and desorption takes place on TiO2, showing a strong interaction between TiO2 and adsorbates. At temperature above 200 degrees C, H2S or SO2 adsorbed on TiO2 can be converted into S, H2O and SO2 or SO3. While on the hydrogen treated TiO2, H2S is decomposed into S and H-2, SO2 into S. The active sites on TiO2 surface cannot be so strongly adsorbed by SO2 that it is much more resistant to the sulfation reaction. Unlike TiO2, Al2O3 only provides surface adsorption sites, which can be readily sulfated. The data obtained support one's understanding why TiO2 exhibits a better catalytic performance than that of Al2O3 as a Claus reaction catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A bench scale reaction test for methane aromatization in the absence of an added oxidant was performed and its reaction result evaluated based on the carbon balance of the system. The result was compared with those obtained from the micro-reaction test to ensure the accuracy of the internal standard analyzing method employed in this paper. The catalytic performances of modified Mo/HZSM-5 catalysts were examined. It was found that pre-treatment by steam on HZSM-5 weakened the serious deposition of coke, and pre-impregnation of n-ethyl silicate on HZSM-5 could improve the conversion of CH4, but had little effect on coke formation. A low temperature activation procedure including pre-reduction of the catalyst with methane prevents the zeolite lattice from being seriously destroyed by high valence state Mo species when the Mo loading is high. It was suggested that Mo2C species detected by XRD spectra was the active phase for CH4 aromatization.
Resumo:
Reversed-phase high-performance liquid chromatographic (RP-HPLC) retention parameters, which are determined by the intermolecular interactions in retention process, can be considered as the chemical molecular descriptors in linear free energy relationships (LFERs). On the basis of the characterization and comparison of octadecyl-bonded silica gel (ODS), cyano-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns with linear solvation energy relationships (LSERs), a new multiple linear regression model using RP-HPLC retention parameters on ODS and CN columns as variables for estimation of soil adsorption coefficients was developed. It was tested on a set of reference substances from various chemical classes. The results showed that the multicolumn method was more promising than a single-column method was for the estimation of soil adsorption coefficients. The accuracy of the suggested model is identical with that of LSERs.
Resumo:
A dense Ba0.5Sr0.5Co0.8Fe0.2O3-delta membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875degreesC, 94% of methane conversion, 98% of CO selectivity, 95% of H-2 selectivity, and as high as 8.8 mL/(min (.) cm(2)) of oxygen flux were obtained. In POM reaction condition. the membrane tube shows a very good stability.