887 resultados para Management control
Resumo:
Community Based Resource Management (CBRM) understood as an approach emphasizes a community's capability, responsibility and accountability with regards to managing resources. Based on the recommendations for the Nigerian-German Kainji Lake Fisheries Promotion Project (KLFPP), the Niger and Kebbi States Fisheries Edicts were promulgated in 1997. These edicts, among other things, banned the use of beach seines. Given the conviction of KLFPP, that if communities whose livelihood is linked to the fishery, understand and identify the problems and by consensus agree to the solutions of fisheries problems, they are more likely to adhere to any control measures, specifically the ban on beach seine. In 1999 a first agreement was reached between beach seiners, non-beach seiners and government authorities leading to an almost complete elimination of beach seine on the Lake Kainji. However, despite on going efforts of the Kainji Lake Fisheries Management and Conservation Unit in 2000 and possibly because of certain oversights during and after the first agreement, in May 2001 a significant number of beach seiners was observed. This led to a re-assessment of our approach, which lately culminated into another round of negotiation. The paper presents the latest results on this on-going process
Resumo:
This paper explores the benefits of including age-structure in the control rule (HCR) when decision makers regard their (age-structured) models as approximations. We find that introducing age structure into the HCR reduces both the volatility of the spawning biomass and the yield. Although at a fairly imprecise level the benefits are lower, there are still major advantages for actual assessment precision of the case study. Moreover, we find that when age-structure is included in the HCR the relative ranking of different policies in terms of variance in biomass and yield does not differ. These results are shown both theoretically and numerically by applying the model to the Southern Hake fishery.
Resumo:
El presente proyecto consiste en el análisis y búsqueda de soluciones para el control de producción de la unidad de rodajes de la compañía CAF S.A. Para ello, se ha tenido que analizar procesos de producción, capturar requerimientos, desarrollar unas herramientas de control de producción temporales y elaborar una especificación de requisitos. Sin olvidar la gestión e interlocución con proveedores. Estas líneas de trabajo se encuentran descritas en esta memoria, junto con análisis de resultados, conclusiones y unas líneas futuras donde se seguirá trabajando.
Resumo:
This document lists the undesirable effects of water hyacinth (Eichhornia crassipes) on fisheries in Lake Kainji (Nigeria) and the integrated Water Hyacinth Control Programme in its ongoing fisheries management and development activities on the lake. Special regard is given to the design, construction and installation of a water hyacinth barrier across the River Niger. (PDF contains 44 pages)
Resumo:
Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)
Resumo:
Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)
Resumo:
In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)
Resumo:
Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)
Resumo:
The paper traces the different management practices adopted for Nigerian inland water bodies from the Colonial era to independence. It observes that the full potentials of these waters have never been realized over the years due to the absence of an effective management. The replacement of the traditional fisheries management by the centralized top-down approach by government after independence has not helped matters. Lately, the cooperative/community-based management approach has taken the centre stage worldwide. This has been identified to offer the most viable and equitable option towards the attainment of an optimum utilization of the fisheries resource. The entire community sensing security of tenure and enjoying some of the benefits from access control will actively take responsibility and enforcement. The paper drew experiences from some water bodies in Bangladesh, Philippines, Benin Republic and Malawi showing sound management strategy that, if adopted for our small and medium size reservoirs and other water bodies, would help optimize on an sustainable manner the benefits from those water bodies
Resumo:
Fundamental changes in the management of water resources in Portugal are now evolving. Five regional organisations termed Administracaos de Regiao Hidrographic (ARH), will be created to manage water resources within their respective geographical areas. These areas will be catchment based. As a fore-runner to the implementation of the five ARH's a foundation project has been established within the Direcao-Geral do Recursos Naturais to examine the practical implications of the new system. This project has been divided into a number of sub-projects and complementary projects to include the Tejo complementary project. The Tejo complementary project is the focus of this report. The report is to advise on the role of biology in the proposed ARH, to establish priorities for biological studies within the present Projecto de Gestao Integrada dos Recursos Hidricos da Bacia Hidrografica do Rio Tejo (PGIRH/T) and to assist with the planning of laboratory facilities for biology at the new PGIRH/T laboratory at Alges, Lisboa.
Resumo:
The ”Vollenweider model” is a sophisticated mathematical statement about the long-range behaviour of (mainly temperate) lakes and their ability to support phytoplankton chlorophyll. Misapplication of the model, against which Vollenweider himself warned, has led to many misconceptions about the dynamics of plankton in lakes and reservoirs and about how best to manage systems subject to eutrophication. This contribution intends to frame the most important issues in context of the phosphorus- loading and phosphorus-limitation concepts. Emphasis is placed on the need to distinguish rate-limitation from capacity-limitation, to understand which is more manageable and why, to discern the mechanisms of internal recycling and their importance, and to appreciate the respective roles of physical and biotic components in local control of algal dynamics. Some general approaches to the management of water quality in lakes and reservoirs to eutrophication are outlined.
Resumo:
Results from long-term investigations on biomanipulation show that indirect effects are at least as important as direct effects are for the stability of biomanipulation. Three types of indirect effects can be distinguished: (1) a change in quantity or quality of the resource base, (2) behavioural change of the prey, and (3) development of anti-predator traits. Although indirect effects of type (2), (e.g. a change in the pattern of vertical migration of zooplankton), and type (3), (e.g. development of helmets and neck teeth in Daphnia), are important mechanisms, the most essential indirect effects regarding biomanipulation belong to type (1). An example of the latter will be demonstrated: the complex of indirect effects of enhanced grazing by large herbivores on the phosphorus metabolism of the lake. It is concluded that control of the indirect effects is absolutely necessary to stabilize biomanipulation measures, but this is much more difficult than the control of direct effects and needs deeper insights into the structuring mechanisms of food webs. Proper management of fish stocks, in combination with the control of phosphorus load and/or the physical conditions, seems to be the most promising way of controlling the indirect effects of biomanipulation.
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.