826 resultados para Management Misperceptions: An Obstacle to Motivation
Resumo:
This paper argues that features of Japanese organizations, previously held to be the foundations of innovation, change and flexibility, can equally be significant barriers to change, innovation and adaptation in turbulent economic environments. This paper draws on two in-depth case studies of Japanese organizations. It shows how, in both cases, these firms displayed specific weaknesses in the ways in which they integrate and bundle knowledge, in particular around their research and development (R&D) functions. Despite the adoption of strategies of technological innovation and internationalization, the data suggest that the pursuit of both strategies is beset by barriers of inertia. Embedded internal network connections and knowledge-sharing routines between central R&D and other divisions are inappropriate for the revised strategy. Existing external connections, with preferred suppliers and customers within keiretsu structures, and close relationships with existing R&D partners retard these firms' strategic flexibility. With a limited variety of latent routines, knowledge, capabilities and agency to draw on when needed, these firms have limited organizational responsiveness and high levels of path-dependency.
Resumo:
Genome-wide association studies have identified SNPs reproducibly associated with type 2 diabetes (T2D). We examined the effect of genetic predisposition to T2D on insulin sensitivity and secretion using detailed phenotyping in overweight individuals with no diagnosis of T2D. Furthermore, we investigated whether this genetic predisposition modifies the responses in beta-cell function and insulin sensitivity to a 24-week dietary intervention. We genotyped 25 T2D-associated SNPs in 377 white participants from the RISCK study. Participants underwent an IVGTT prior to and following a dietary intervention that aimed to lower saturated fat intake by replacement with monounsaturated fat or carbohydrate. We composed a genetic predisposition score (T2D-GPS) by summing the T2D risk-increasing alleles of the 25 SNPs and tested for association with insulin secretion and sensitivity at baseline, and with the change in response to the dietary intervention. At baseline, a higher T2D-GPS was associated with lower acute insulin secretion (AIRg 4% lower/risk allele, P = 0.006) and lower insulin secretion for a given level of insulin sensitivity, assessed by the disposition index (DI 5% lower/risk allele, P = 0.002), but not with insulin sensitivity (Si). T2D-GPS did not modify changes in insulin secretion, insulin sensitivity or the disposition index in response to the dietary interventions to lower saturated fat. Participants genetically predisposed to T2D have an impaired ability to compensate for peripheral insulin resistance with insulin secretion at baseline, but this does not modify the response to a reduction in dietary saturated fat through iso-energetic replacement with carbohydrate or monounsaturated fat.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
Limnologists had an early preoccupation with lake classification. It gave a necessary structure to the many chemical and biological observations that were beginning to form the basis of one of the earliest truly environmental sciences. August Thienemann was the doyen of such classifiers and his concept with Einar Naumann of oligotrophic and eutrophic lakes remains central to the world-view that limnologists still have. Classification fell into disrepute, however, as it became clear that there would always be lakes that deviated from the prescriptions that the classifiers made for them. Continua became the de rigeur concept and lakes were seen as varying along many chemical, biological and geographic axes. Modern limnologists are comfortable with this concept. That all lakes are different guarantees an indefinite future for limnological research. For those who manage lakes and the landscapes in which they are set, however, it is not very useful. There may be as many as 300000 standing water bodies in England and Wales alone and maybe as many again in Scotland. More than 80 000 are sizable (> 1 ha). Some classification scheme to cope with these numbers is needed and, as human impacts on them increase, a system of assessing and monitoring change must be built into such a scheme. Although ways of classifying and monitoring running waters are well developed in the UK, the same is not true of standing waters. Sufficient understanding of what determines the nature and functioning of lakes exists to create a system which has intellectual credibility as well as practical usefulness. This paper outlines the thinking behind a system which will be workable on a north European basis and presents some early results.
Resumo:
This is a comprehensive textbook for students of Television Studies, now updated for its third edition. The book provides students with a framework for understanding the key concepts and main approaches to Television Studies, including audience research, television history and broadcasting policy, and the analytical study of individual programmes. The book includes a glossary of key terms used in the television industry and in the academic study of television, there are suggestions for further reading at the end of each chapter, and chapters include suggested activities for use in class or as assignments. The case studies in the book include analysis of advertisements, approaches to news reporting, television scheduling, and challenges to television in new contexts of viewing on computers and mobile devices. The topics of individual chapters are: studying television, television histories, television cultures, television texts and narratives, television genres and formats, television production, television quality and value, television realities and representation, television censorship and regulation, television audiences, and the likely future for television.
Resumo:
The agricultural policy agenda has been broadened with farm policy issues now interlinking with other policy domains (food safety, energy supplies, environmental protection, development aid, etc.). New actors promoting values which sometimes conflict, or which are not always easily reconcilable, with those previously guiding agricultural policy have entered the broader agricultural and food policy domain. The studies of various new policy issues inter-linking with the agricultural policy domain included in this special issue show that value conflicts are addressed in different ways and thus result in inter-institutional coordination and conflict unfolding differently. Studies of inter-institutional policy making in the agricultural policy sector have the potential to contribute to theoretical developments in public policy analysis in much the same way as agricultural policy studies did in the past.
Resumo:
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.
Resumo:
Data augmentation is a powerful technique for estimating models with latent or missing data, but applications in agricultural economics have thus far been few. This paper showcases the technique in an application to data on milk market participation in the Ethiopian highlands. There, a key impediment to economic development is an apparently low rate of market participation. Consequently, economic interest centers on the “locations” of nonparticipants in relation to the market and their “reservation values” across covariates. These quantities are of policy interest because they provide measures of the additional inputs necessary in order for nonparticipants to enter the market. One quantity of primary interest is the minimum amount of surplus milk (the “minimum efficient scale of operations”) that the household must acquire before market participation becomes feasible. We estimate this quantity through routine application of data augmentation and Gibbs sampling applied to a random-censored Tobit regression. Incorporating random censoring affects markedly the marketable-surplus requirements of the household, but only slightly the covariates requirements estimates and, generally, leads to more plausible policy estimates than the estimates obtained from the zero-censored formulation
Resumo:
In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels
Resumo:
We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs