999 resultados para Machine costs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-line measurement of COD and NH4-N in the WWTP inflow is crucial for the timely monitoring of biological wastewater treatment processes and for the development of advanced control strategies for optimized WWTP operation. As a direct measurement of COD and NH4-N requires expensive and high maintenance in-line probes or analyzers, an approach estimating COD and NH4-N based on standard and spectroscopic in-line inflow measurement systems using Machine Learning Techniques is presented in this paper. The results show that COD estimation using Radom Forest Regression with a normalized MSE of 0.3, which is sufficiently accurate for practical applications, can be achieved using only standard in-line measurements. In the case of NH4-N, a good estimation using Partial Least Squares Regression with a normalized MSE of 0.16 is only possible based on a combination of standard and spectroscopic in-line measurements. Furthermore, the comparison of regression and classification methods shows that both methods perform equally well in most cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a surrogate-model based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine’s previous operational performance, the DFIG’s stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization (PSO)-based surrogate optimization techniques are used in conjunction with the finite element method (FEM) to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of learning Bayesian network structures from data based on score functions that are decomposable. It describes properties that strongly reduce the time and memory costs of many known methods without losing global optimality guarantees. These properties are derived for different score criteria such as Minimum Description Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates structural constraints with data in a way to guarantee global optimality. As an example, structural constraints are used to map the problem of structure learning in Dynamic Bayesian networks into a corresponding augmented Bayesian network. Finally, we show empirically the benefits of using the properties with state-of-the-art methods and with the new algorithm, which is able to handle larger data sets than before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-channel sound installation involving fixed loudspeakers and multiple mp3 players, commissioned by the Sainsbury Centre of Visual Arts, Norwich as a response to the sculpture of Ian Tyson and the architecture of Denys Lasdun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the commercial application of the Exechon machine, this paper proposed a novel parallel kinematic machine (PKM) named Exe-Variant. By exchanging the sequence of kinematic pairs in each limb of the Exechon machine, the Exe-Variant PKM claims an arrangement of 2UPR/1SPR topology and consists of two identical UPR limbs and one SPR limb. The inverse kinematics of the 2UPR/1SPR parallel mechanism was firstly analyzed based on which a conceptual design of the Exe-Variant was carried out. Then an algorithm of reachable workspace searching for the Exe-Variant and the Exchon was proposed. Finally, the workspaces of two example systems of the Exechon and the Exe-Variant with approximate dimensions were numerically simulated and compared. The comparison shows that the Exe-Variant possesses a competitive workspace with the Exechon machine, indicating it can be used as a promising reconfigurable module in a hybrid 5-DOF machine tool system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to carry out high-precision machining of aerospace structural components with large size, thin wall and complex surface, this paper proposes a novel parallel kinematic machine (PKM) and formulates its semi-analytical theoretical stiffness model considering gravitational effects that is verified by stiffness experiments. From the viewpoint of topology structure, the novel PKM consists of two substructures in terms of the redundant and overconstrained parallel mechanisms that are connected by two interlinked revolute joints. The theoretical stiffness model of the novel PKM is established based upon the virtual work principle and deformation superposition principle after mapping the stiffness models of substructures from joint space to operated space by Jacobian matrices and considering the deformation contributions of interlinked revolute joints to two substructures. Meanwhile, the component gravities are treated as external payloads exerting on the end reference point of the novel PKM resorting to static equivalence principle. This approach is proved by comparing the theoretical stiffness values with experimental stiffness values in the same configurations, which also indicates equivalent gravity can be employed to describe the actual distributed gravities in an acceptable accuracy manner. Finally, on the basis of the verified theoretical stiffness model, the stiffness distributions of the novel PKM are illustrated and the contributions of component gravities to the stiffness of the novel PKM are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The number of patients with advanced chronic kidney disease opting for conservative management rather than dialysis is unknown but likely to be growing as increasingly frail patients with advanced renal disease present to renal services. Conservative kidney management includes ongoing medical input and support from a multidisciplinary team. There is limited evidence concerning patient and carer experience of this choice. This study will explore quality of life, symptoms, cognition, frailty, performance decision making, costs and impact on carers in people with advanced chronic kidney disease managed without dialysis and is funded by the National Institute of Health Research in the UK.

METHODS: In this prospective, multicentre, longitudinal study, patients will be recruited in the UK, by renal research nurses, once they have made the decision not to embark on dialysis. Carers will be asked to 'opt-in' with consent from patients. The approach includes longitudinal quantitative surveys of quality of life, symptoms, decision making and costs for patients and quality of life and costs for carers, with questionnaires administered quarterly over 12 months. Additionally, the decision making process will be explored via qualitative interviews with renal physicians/clinical nurse specialists.

DISCUSSION: The study is designed to capture patient and carer profiles when conservative kidney management is implemented, and understand trajectories of care-receiving and care-giving with the aim of optimising palliative care for this population. It will explore the interactions that lead to clinical care decisions and the impact of these decisions on informal carers with the intention of improving clinical outcomes for patients and the experiences of care givers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinopathy of prematurity (ROP) is a rare disease in which retinal blood vessels of premature infants fail to develop normally, and is one of the major causes of childhood blindness throughout the world. The Discrete Conditional Phase-type (DC-Ph) model consists of two components, the conditional component measuring the inter-relationships between covariates and the survival component which models the survival distribution using a Coxian phase-type distribution. This paper expands the DC-Ph models by introducing a support vector machine (SVM), in the role of the conditional component. The SVM is capable of classifying multiple outcomes and is used to identify the infant's risk of developing ROP. Class imbalance makes predicting rare events difficult. A new class decomposition technique, which deals with the problem of multiclass imbalance, is introduced. Based on the SVM classification, the length of stay in the neonatal ward is modelled using a 5, 8 or 9 phase Coxian distribution.