746 resultados para Machine Vision
Resumo:
Syftet med detta examensarbete var att ta reda på vilka tankar som finns angående helhetsperspektivet i den stundande gymnasiereformen Gymnasieskola 2007 (GY-07). För att få reda på detta intervjuades två rektorer och åtta lärare som fick ge sin syn på den kommande reformen. De tillhörde två olika program, ett studieförberedande respektive ett yrkesförberedande och dessa program kontrasteras mot varandra. Resultatet visar att alla informanter har en positiv inställning till reformen men att det yrkesförberedande programmet är mer positivt inställda än det studieförberedande programmet som hyser mindre tillförsikt till implementeringen av reformen.
Resumo:
The rapid development of data transfer through internet made it easier to send the data accurate and faster to the destination. There are many transmission media to transfer the data to destination like e-mails; at the same time it is may be easier to modify and misuse the valuable information through hacking. So, in order to transfer the data securely to the destination without any modifications, there are many approaches like cryptography and steganography. This paper deals with the image steganography as well as with the different security issues, general overview of cryptography, steganography and digital watermarking approaches. The problem of copyright violation of multimedia data has increased due to the enormous growth of computer networks that provides fast and error free transmission of any unauthorized duplicate and possibly manipulated copy of multimedia information. In order to be effective for copyright protection, digital watermark must be robust which are difficult to remove from the object in which they are embedded despite a variety of possible attacks. The message to be send safe and secure, we use watermarking. We use invisible watermarking to embed the message using LSB (Least Significant Bit) steganographic technique. The standard LSB technique embed the message in every pixel, but my contribution for this proposed watermarking, works with the hint for embedding the message only on the image edges alone. If the hacker knows that the system uses LSB technique also, it cannot decrypt correct message. To make my system robust and secure, we added cryptography algorithm as Vigenere square. Whereas the message is transmitted in cipher text and its added advantage to the proposed system. The standard Vigenere square algorithm works with either lower case or upper case. The proposed cryptography algorithm is Vigenere square with extension of numbers also. We can keep the crypto key with combination of characters and numbers. So by using these modifications and updating in this existing algorithm and combination of cryptography and steganography method we develop a secure and strong watermarking method. Performance of this watermarking scheme has been analyzed by evaluating the robustness of the algorithm with PSNR (Peak Signal to Noise Ratio) and MSE (Mean Square Error) against the quality of the image for large amount of data. While coming to see results of the proposed encryption, higher value of 89dB of PSNR with small value of MSE is 0.0017. Then it seems the proposed watermarking system is secure and robust for hiding secure information in any digital system, because this system collect the properties of both steganography and cryptography sciences.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings
Resumo:
This study examines the question of how language teachers in a highly technologyfriendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
Bakgrunden till projektet Möjligheternas Hus var att det fanns ett behov av att utveckla rehabiliteringsinsatser för individer med psykiska funktionsnedsättningar som står långt från arbetsmarknaden, men även att de skulle erbjudas tillgång till en meningsfull daglig verksamhet. Rapporten syftar till att beskriva, problematisera och analysera hur projektet Möjligheternas Hus genomförts och vad det resulterade i. Den handlar om hur projektet har förmått fungera som ett verktyg för att skapa ett socialt företag för personer med psykiska funktionsnedsättningar. Rapporten behandlar även hur deltagarna har påverkats av sin medverkan i projektet, både vad avser deras livssituation i stort och deras möjligheter att bryta ett utanförskap samt hur projektet lyckades med att uppnå de mål som sattes upp. Deltagarna har startat ett socialt företag och de upplever att de kommit att må bättre. Flertalet uppger att de trivs bättre med livet, att de har ett rikare socialt liv, självförtroendet och självkänslan har stärkts och att det sociala företaget ger hopp för framtiden. En fråga som dock fortfarande är obesvarad är om sociala företag är ett framgångsrikt sätt att hjälpa och stödja individer som befinner i ett utanförskap att kunna lämna detta? Den här rapporten har inga svar på detta, med visar samtidigt att det är en fråga som behöver studeras ytterligare.
Resumo:
This study examines the question of how language teachers in a highly technology-friendly university environment view machine translation and the implications that this has for the personal learning environments of students. It brings an activity-theory perspective to the question, examining the ways that the introduction of new tools can disrupt the relationship between different elements in an activity system. This perspective opens up for an investigation of the ways that new tools have the potential to fundamentally alter traditional learning activities. In questionnaires and group discussions, respondents showed general agreement that although use of machine translation by students could be considered cheating, students are bound to use it anyway, and suggested that teachers focus on the kinds of skills students would need when using machine translation and design assignments and exams to practice and assess these skills. The results of the empirical study are used to reflect upon questions of what the roles of teachers and students are in a context where many of the skills that a person needs to be able to interact in a foreign language increasingly can be outsourced to laptops and smartphones.
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.