781 resultados para Machine Learning Algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To investigate whether advanced visualizations of spirography-based objective measures are useful in differentiating drug-related motor dysfunctions between Off and dyskinesia in Parkinson’s disease (PD). Background: During the course of a 3 year longitudinal clinical study, in total 65 patients (43 males and 22 females with mean age of 65) with advanced PD and 10 healthy elderly (HE) subjects (5 males and 5 females with mean age of 61) were assessed. Both patients and HE subjects performed repeated and time-stamped assessments of their objective health indicators using a test battery implemented on a telemetry touch screen handheld computer, in their home environment settings. Among other tasks, the subjects were asked to trace a pre-drawn Archimedes spiral using the dominant hand and repeat the test three times per test occasion. Methods: A web-based framework was developed to enable a visual exploration of relevant spirography-based kinematic features by clinicians so they can in turn evaluate the motor states of the patients i.e. Off and dyskinesia. The system uses different visualization techniques such as time series plots, animation, and interaction and organizes them into different views to aid clinicians in measuring spatial and time-dependent irregularities that could be associated with the motor states. Along with the animation view, the system displays two time series plots for representing drawing speed (blue line) and displacement from ideal trajectory (orange line). The views are coordinated and linked i.e. user interactions in one of the views will be reflected in other views. For instance, when the user points in one of the pixels in the spiral view, the circle size of the underlying pixel increases and a vertical line appears in the time series views to depict the corresponding position. In addition, in order to enable clinicians to observe erratic movements more clearly and thus improve the detection of irregularities, the system displays a color-map which gives an idea of the longevity of the spirography task. Figure 2 shows single randomly selected spirals drawn by a: A) patient who experienced dyskinesias, B) HE subject, and C) patient in Off state. Results: According to a domain expert (DN), the spirals drawn in the Off and dyskinesia motor states are characterized by different spatial and time features. For instance, the spiral shown in Fig. 2A was drawn by a patient who showed symptoms of dyskinesia; the drawing speed was relatively high (cf. blue-colored time series plot and the short timestamp scale in the x axis) and the spatial displacement was high (cf. orange-colored time series plot) associated with smooth deviations as a result of uncontrollable movements. The patient also exhibited low amount of hesitation which could be reflected both in the animation of the spiral as well as time series plots. In contrast, the patient who was in the Off state exhibited different kinematic features, as shown in Fig. 2C. In the case of spirals drawn by a HE subject, there was a great precision during the drawing process as well as unchanging levels of time-dependent features over the test trial, as seen in Fig. 2B. Conclusions: Visualizing spirography-based objective measures enables identification of trends and patterns of drug-related motor dysfunctions at the patient’s individual level. Dynamic access of visualized motor tests may be useful during the evaluation of drug-related complications such as under- and over-medications, providing decision support to clinicians during evaluation of treatment effects as well as improve the quality of life of patients and their caregivers. In future, we plan to evaluate the proposed approach by assessing within- and between-clinician variability in ratings in order to determine its actual usefulness and then use these ratings as target outcomes in supervised machine learning, similarly as it was previously done in the study performed by Memedi et al. (2013).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vegetation growing on railway trackbeds and embankments present potential problems. The presence of vegetation threatens the safety of personnel inspecting the railway infrastructure. In addition vegetation growth clogs the ballast and results in inadequate track drainage which in turn could lead to the collapse of the railway embankment. Assessing vegetation within the realm of railway maintenance is mainly carried out manually by making visual inspections along the track. This is done either on-site or by watching videos recorded by maintenance vehicles mainly operated by the national railway administrative body. A need for the automated detection and characterisation of vegetation on railways (a subset of vegetation control/management) has been identified in collaboration with local railway maintenance subcontractors and Trafikverket, the Swedish Transport Administration (STA). The latter is responsible for long-term planning of the transport system for all types of traffic, as well as for the building, operation and maintenance of public roads and railways. The purpose of this research project was to investigate how vegetation can be measured and quantified by human raters and how machine vision can automate the same process. Data were acquired at railway trackbeds and embankments during field measurement experiments. All field data (such as images) in this thesis work was acquired on operational, lightly trafficked railway tracks, mostly trafficked by goods trains. Data were also generated by letting (human) raters conduct visual estimates of plant cover and/or count the number of plants, either on-site or in-house by making visual estimates of the images acquired from the field experiments. Later, the degree of reliability of(human) raters’ visual estimates were investigated and compared against machine vision algorithms. The overall results of the investigations involving human raters showed inconsistency in their estimates, and are therefore unreliable. As a result of the exploration of machine vision, computational methods and algorithms enabling automatic detection and characterisation of vegetation along railways were developed. The results achieved in the current work have shown that the use of image data for detecting vegetation is indeed possible and that such results could form the base for decisions regarding vegetation control. The performance of the machine vision algorithm which quantifies the vegetation cover was able to process 98% of the im-age data. Investigations of classifying plants from images were conducted in in order to recognise the specie. The classification rate accuracy was 95%.Objective measurements such as the ones proposed in thesis offers easy access to the measurements to all the involved parties and makes the subcontracting process easier i.e., both the subcontractors and the national railway administration are given the same reference framework concerning vegetation before signing a contract, which can then be crosschecked post maintenance.A very important issue which comes with an increasing ability to recognise species is the maintenance of biological diversity. Biological diversity along the trackbeds and embankments can be mapped, and maintained, through better and robust monitoring procedures. Continuously monitoring the state of vegetation along railways is highly recommended in order to identify a need for maintenance actions, and in addition to keep track of biodiversity. The computational methods or algorithms developed form the foundation of an automatic inspection system capable of objectively supporting manual inspections, or replacing manual inspections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A resistência a múltiplos fármacos é um grande problema na terapia anti-cancerígena, sendo a glicoproteína-P (P-gp) uma das responsáveis por esta resistência. A realização deste trabalho incidiu principalmente no desenvolvimento de modelos matemáticos/estatísticos e “químicos”. Para os modelos matemáticos/estatísticos utilizamos métodos de Machine Learning como o Support Vector Machine (SVM) e o Random Forest, (RF) em relação aos modelos químicos utilizou-se farmacóforos. Os métodos acima mencionados foram aplicados a diversas proteínas P-gp, p53 e complexo p53-MDM2, utilizando duas famílias: as pifitrinas para a p53 e flavonóides para P-gp e, em menor medida, um grupo diversificado de moléculas de diversas famílias químicas. Nos modelos obtidos pelo SVM quando aplicados à P-gp e à família dos flavonóides, obtivemos bons valores através do kernel Radial Basis Function (RBF), com precisão de conjunto de treino de 94% e especificidade de 96%. Quanto ao conjunto de teste com previsão de 70% e especificidade de 67%, sendo que o número de falsos negativos foi o mais baixo comparativamente aos restantes kernels. Aplicando o RF à família dos flavonóides verificou-se que o conjunto de treino apresenta 86% de precisão e uma especificidade de 90%, quanto ao conjunto de teste obtivemos uma previsão de 70% e uma especificidade de 60%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Repetindo o procedimento anterior (RF) e utilizando um total de 63 descritores, os resultados apresentaram valores inferiores obtendo-se para o conjunto de treino 79% de precisão e 82% de especificidade. Aplicando o modelo ao conjunto de teste obteve-se 70% de previsão e 60% de especificidade. Comparando os dois métodos, escolhemos o método SVM com o kernel RBF como modelo que nos garante os melhores resultados de classificação. Aplicamos o método SVM à P-gp e a um conjunto de moléculas não flavonóides que são transportados pela P-gp, obteve-se bons valores através do kernel RBF, com precisão de conjunto de treino de 95% e especificidade de 93%. Quanto ao conjunto de teste, obtivemos uma previsão de 70% e uma especificidade de 69%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Aplicou-se o método do farmacóforo a três alvos, sendo estes, um conjunto de inibidores flavonóides e de substratos não flavonóides para a P-gp, um grupo de piftrinas para a p53 e um conjunto diversificado de estruturas para a ligação da p53-MDM2. Em cada um dos quatro modelos de farmacóforos obtidos identificou-se três características, sendo que as características referentes ao anel aromático e ao dador de ligações de hidrogénio estão presentes em todos os modelos obtidos. Realizando o rastreio em diversas bases de dados utilizando os modelos, obtivemos hits com uma grande diversidade estrutural.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a low cost non-intrusive home energy monitor built on top of Non-Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already considered low cost alternatives to the big majority of existing commercial energy monitors but the goal here is to make its cost even lower by using a mini netbook as a whole in one solution. The mini netbook is installed in the homes main circuit breaker and computes power consumption by reading current and voltage from the built-in sound card. At the same time, feedback to the users is provided using the 11’’ LCD screen as well as other built-in I/O modules. Our meter is also capable of detecting changes in power and tries to find out which appliance lead to that change and it is being used as part of an eco-feedback platform that was build to study the long terms of energy eco-feedback in individuals. In this thesis the steps that were taken to come up with such a system are presented, from the basics of AC power measurements to the implementation of an event detector and classifier that was used to disaggregate the power load. In the last chapter results from some validation tests that have been performed are presented in order to validate the experiment. It is believed that such a system will not only be important as an energy monitor, but also as an open system than can be easily changed to accommodate and test new or existing nonintrusive load monitoring techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo determinar quais variáveis dimensionais da folha são mais adequadas para utilização na estimativa da área foliar do antúrio (Anthurium andraeanum), cv. Apalai, por meio de equação de regressão linear, e comparar o desempenho de diferentes funções de regressão obtidas com o uso de aprendizado de máquina (AM). A variável que melhor estimou a área foliar foi o produto das dimensões lineares (comprimento e largura), CxL, sendo a equação proposta Af = 0.9672 *C x L, com coeficiente de determinação (R²) de 0,99. Verificou-se, também, com o uso de AM, que as funções lineares são mais adequadas para a estimação da área foliar dessa espécie vegetal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The industrial automation is directly linked to the development of information tecnology. Better hardware solutions, as well as improvements in software development methodologies make possible the rapid growth of the productive process control. In this thesis, we propose an architecture that will allow the joining of two technologies in hardware (industrial network) and software field (multiagent systems). The objective of this proposal is to join those technologies in a multiagent architecture to allow control strategies implementations in to field devices. With this, we intend develop an agents architecture to detect and solve problems which may occur in the industrial network environment. Our work ally machine learning with industrial context, become proposed multiagent architecture adaptable to unfamiliar or unexpected production environment. We used neural networks and presented an allocation strategies of these networks in industrial network field devices. With this we intend to improve decision support at plant level and allow operations human intervention independent

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed