857 resultados para Machine Learning,Deep Learning,Convolutional Neural Networks,Image Classification,Python
Resumo:
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.
Resumo:
The Standard Model (SM) of particle physics predicts the existence of a Higgs field responsible for the generation of particles' mass. However, some aspects of this theory remain unsolved, supposing the presence of new physics Beyond the Standard Model (BSM) with the production of new particles at a higher energy scale compared to the current experimental limits. The search for additional Higgs bosons is, in fact, predicted by theoretical extensions of the SM including the Minimal Supersymmetry Standard Model (MSSM). In the MSSM, the Higgs sector consists of two Higgs doublets, resulting in five physical Higgs particles: two charged bosons $H^{\pm}$, two neutral scalars $h$ and $H$, and one pseudoscalar $A$. The work presented in this thesis is dedicated to the search of neutral non-Standard Model Higgs bosons decaying to two muons in the model independent MSSM scenario. Proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV are used, corresponding to an integrated luminosity of $35.9\ \text{fb}^{-1}$. Such search is sensitive to neutral Higgs bosons produced either via gluon fusion process or in association with a $\text{b}\bar{\text{b}}$ quark pair. The extensive usage of Machine and Deep Learning techniques is a fundamental element in the discrimination between signal and background simulated events. A new network structure called parameterised Neural Network (pNN) has been implemented, replacing a whole set of single neural networks trained at a specific mass hypothesis value with a single neural network able to generalise well and interpolate in the entire mass range considered. The results of the pNN signal/background discrimination are used to set a model independent 95\% confidence level expected upper limit on the production cross section times branching ratio, for a generic $\phi$ boson decaying into a muon pair in the 130 to 1000 GeV range.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.
Resumo:
Il seguente lavoro si propone come analisi degli operatori convoluzionali che caratterizzano le graph neural networks. ln particolare, la trattazione si divide in due parti, una teorica e una sperimentale. Nella parte teorica vengono innanzitutto introdotte le nozioni preliminari di mesh e convoluzione su mesh. In seguito vengono riportati i concetti base del geometric deep learning, quali le definizioni degli operatori convoluzionali e di pooling e unpooling. Un'attenzione particolare è stata data all'architettura Graph U-Net. La parte sperimentare riguarda l'applicazione delle reti neurali e l'analisi degli operatori convoluzionali applicati al denoising di superfici perturbate a causa di misurazioni imperfette effettuate da scanner 3D.
Resumo:
La crescente disponibilità di scanner 3D ha reso più semplice l’acquisizione di modelli 3D dall’ambiente. A causa delle inevitabili imperfezioni ed errori che possono avvenire durante la fase di scansione, i modelli acquisiti possono risultare a volte inutilizzabili ed affetti da rumore. Le tecniche di denoising hanno come obiettivo quello di rimuovere dalla superficie della mesh 3D scannerizzata i disturbi provocati dal rumore, ristabilendo le caratteristiche originali della superficie senza introdurre false informazioni. Per risolvere questo problema, un approccio innovativo è quello di utilizzare il Geometric Deep Learning per addestrare una Rete Neurale in maniera da renderla in grado di eseguire efficacemente il denoising di mesh. L’obiettivo di questa tesi è descrivere il Geometric Deep Learning nell’ambito del problema sotto esame.
Resumo:
La seguente tesi propone un’introduzione al geometric deep learning. Nella prima parte vengono presentati i concetti principali di teoria dei grafi ed introdotta una dinamica di diffusione su grafo, in analogia con l’equazione del calore. A seguire, iniziando dal linear classifier verranno introdotte le architetture che hanno portato all’ideazione delle graph convolutional networks. In conclusione, si analizzano esempi di alcuni algoritmi utilizzati nel geometric deep learning e si mostra una loro implementazione sul Cora dataset, un insieme di dati con struttura a grafo.
Resumo:
La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.
Resumo:
Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.
Resumo:
Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
The job of a historian is to understand what happened in the past, resorting in many cases to written documents as a firsthand source of information. Text, however, does not amount to the only source of knowledge. Pictorial representations, in fact, have also accompanied the main events of the historical timeline. In particular, the opportunity of visually representing circumstances has bloomed since the invention of photography, with the possibility of capturing in real-time the occurrence of a specific events. Thanks to the widespread use of digital technologies (e.g. smartphones and digital cameras), networking capabilities and consequent availability of multimedia content, the academic and industrial research communities have developed artificial intelligence (AI) paradigms with the aim of inferring, transferring and creating new layers of information from images, videos, etc. Now, while AI communities are devoting much of their attention to analyze digital images, from an historical research standpoint more interesting results may be obtained analyzing analog images representing the pre-digital era. Within the aforementioned scenario, the aim of this work is to analyze a collection of analog documentary photographs, building upon state-of-the-art deep learning techniques. In particular, the analysis carried out in this thesis aims at producing two following results: (a) produce the date of an image, and, (b) recognizing its background socio-cultural context,as defined by a group of historical-sociological researchers. Given these premises, the contribution of this work amounts to: (i) the introduction of an historical dataset including images of “Family Album” among all the twentieth century, (ii) the introduction of a new classification task regarding the identification of the socio-cultural context of an image, (iii) the exploitation of different deep learning architectures to perform the image dating and the image socio-cultural context classification.
Resumo:
The development of Next Generation Sequencing promotes Biology in the Big Data era. The ever-increasing gap between proteins with known sequences and those with a complete functional annotation requires computational methods for automatic structure and functional annotation. My research has been focusing on proteins and led so far to the development of three novel tools, DeepREx, E-SNPs&GO and ISPRED-SEQ, based on Machine and Deep Learning approaches. DeepREx computes the solvent exposure of residues in a protein chain. This problem is relevant for the definition of structural constraints regarding the possible folding of the protein. DeepREx exploits Long Short-Term Memory layers to capture residue-level interactions between positions distant in the sequence, achieving state-of-the-art performances. With DeepRex, I conducted a large-scale analysis investigating the relationship between solvent exposure of a residue and its probability to be pathogenic upon mutation. E-SNPs&GO predicts the pathogenicity of a Single Residue Variation. Variations occurring on a protein sequence can have different effects, possibly leading to the onset of diseases. E-SNPs&GO exploits protein embeddings generated by two novel Protein Language Models (PLMs), as well as a new way of representing functional information coming from the Gene Ontology. The method achieves state-of-the-art performances and is extremely time-efficient when compared to traditional approaches. ISPRED-SEQ predicts the presence of Protein-Protein Interaction sites in a protein sequence. Knowing how a protein interacts with other molecules is crucial for accurate functional characterization. ISPRED-SEQ exploits a convolutional layer to parse local context after embedding the protein sequence with two novel PLMs, greatly surpassing the current state-of-the-art. All methods are published in international journals and are available as user-friendly web servers. They have been developed keeping in mind standard guidelines for FAIRness (FAIR: Findable, Accessible, Interoperable, Reusable) and are integrated into the public collection of tools provided by ELIXIR, the European infrastructure for Bioinformatics.
Resumo:
Deep Learning architectures give brilliant results in a large variety of fields, but a comprehensive theoretical description of their inner functioning is still lacking. In this work, we try to understand the behavior of neural networks by modelling in the frameworks of Thermodynamics and Condensed Matter Physics. We approach neural networks as in a real laboratory and we measure the frequency spectrum and the entropy of the weights of the trained model. The stochasticity of the training occupies a central role in the dynamics of the weights and makes it difficult to assimilate neural networks to simple physical systems. However, the analogy with Thermodynamics and the introduction of a well defined temperature leads us to an interesting result: if we eliminate from a CNN the "hottest" filters, the performance of the model remains the same, whereas, if we eliminate the "coldest" ones, the performance gets drastically worst. This result could be exploited in the realization of a training loop which eliminates the filters that do not contribute to loss reduction. In this way, the computational cost of the training will be lightened and more importantly this would be done by following a physical model. In any case, beside important practical applications, our analysis proves that a new and improved modeling of Deep Learning systems can pave the way to new and more efficient algorithms.
Resumo:
Questa tesi propone una panoramica sul funzionamento interno delle architetture alla base del deep learning e in particolare del geometric deep learning. Iniziando a discutere dalla storia degli algoritmi di intelligenza artificiale, vengono introdotti i principali costituenti di questi. In seguito vengono approfonditi alcuni elementi della teoria dei grafi, in particolare il concetto di laplaciano discreto e il suo ruolo nello studio del fenomeno di diffusione sui grafi. Infine vengono presentati alcuni algoritmi utilizzati nell'ambito del geometric deep learning su grafi per la classificazione di nodi. I concetti discussi vengono poi applicati nella realizzazione di un'architettura in grado di classficiare i nodi del dataset Zachary Karate Club.
Resumo:
Il mondo della moda è in continua e costante evoluzione, non solo dal punto di vista sociale, ma anche da quello tecnologico. Nel corso del presente elaborato si è studiata la possibilità di riconoscere e segmentare abiti presenti in una immagine utilizzando reti neurali profonde e approcci moderni. Sono state, quindi, analizzate reti quali FasterRCNN, MaskRCNN, YOLOv5, FashionPedia e Match-RCNN. In seguito si è approfondito l’addestramento delle reti neurali profonde in scenari di alta parallelizzazione e su macchine dotate di molteplici GPU al fine di ridurre i tempi di addestramento. Inoltre si è sperimentata la possibilità di creare una rete per prevedere se un determinato abito possa avere successo in futuro analizzando semplicemente dati passati e una immagine del vestito in questione. Necessaria per tali compiti è stata, inoltre, una approfondita analisi dei dataset esistenti nel mondo della moda e dei metodi per utilizzarli per l’addestramento. Il presente elaborato è stato svolto nell’ambito del progetto FA.RE.TRA. per il quale l'Università di Bologna svolge un compito di consulenza per lo studio di fattibilità su reti neurali in grado di svolgere i compiti menzionati.