987 resultados para MYOCARDIAL INJURY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Although intracranial hypertension is one of the important prognostic factors after head injury, increased intracranial pressure (ICP) may also be observed in patients with favourable outcome. We have studied whether the value of ICP monitoring can be augmented by indices describing cerebrovascular pressure-reactivity and pressure-volume compensatory reserve derived from ICP and arterial blood pressure (ABP) waveforms. METHOD: 96 patients with intracranial hypertension were studied retrospectively: 57 with fatal outcome and 39 with favourable outcome. ABP and ICP waveforms were recorded. Indices of cerebrovascular reactivity (PRx) and cerebrospinal compensatory reserve (RAP) were calculated as moving correlation coefficients between slow waves of ABP and ICP, and between slow waves of ICP pulse amplitude and mean ICP, respectively. The magnitude of 'slow waves' was derived using ICP low-pass spectral filtration. RESULTS: The most significant difference was found in the magnitude of slow waves that was persistently higher in patients with a favourable outcome (p<0.00004). In patients who died ICP was significantly higher (p<0.0001) and cerebrovascular pressure-reactivity (described by PRx) was compromised (p<0.024). In the same patients, pressure-volume compensatory reserve showed a gradual deterioration over time with a sudden drop of RAP when ICP started to rise, suggesting an overlapping disruption of the vasomotor response. CONCLUSION: Indices derived from ICP waveform analysis can be helpful for the interpretation of progressive intracranial hypertension in patients after brain trauma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data have implicated thrombospondin-1 (TSP-1) signaling in the acute neuropathological events that occur in microvascular endothelial cells (ECs) following spinal cord injury (SCI) (Benton et al., 2008b). We hypothesized that deletion of TSP-1 or its receptor CD47 would reduce these pathological events following SCI. CD47 is expressed in a variety of tissues, including vascular ECs and neutrophils. CD47 binds to TSP-1 and inhibits angiogenesis. CD47 also binds to the signal regulatory protein (SIRP)α and facilitates neutrophil diapedesis across ECs to sites of injury. After contusive SCI, TSP-1(-/-) mice did not show functional improvement compared to wildtype (WT) mice. CD47(-/-) mice, however, exhibited functional locomotor improvements and greater white matter sparing. Whereas targeted deletion of either CD47 or TSP-1 improved acute epicenter vascularity in contused mice, only CD47 deletion reduced neutrophil diapedesis and increased microvascular perfusion. An ex vivo model of the CNS microvasculature revealed that CD47(-/-)-derived microvessels (MVs) prominently exhibit adherent WT or CD47(-/-) neutrophils on the endothelial lumen, whereas WT-derived MVs do not. This implicates a defect in diapedesis mediated by the loss of CD47 expression on ECs. In vitro transmigration assays confirmed the role of SIRPα in neutrophil diapedesis through EC monolayers. We conclude that CD47 deletion modestly, but significantly, improves functional recovery from SCI via an increase in vascular patency and a reduction of SIRPα-mediated neutrophil diapedesis, rather than the abrogation of TSP-1-mediated anti-angiogenic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Low brain tissue oxygen pressure (PbtO2) is associated with worse outcome in patients with severe traumatic brain injury (TBI). However, it is unclear whether brain tissue hypoxia is merely a marker of injury severity or a predictor of prognosis, independent from intracranial pressure (ICP) and injury severity. Hypothesis: We hypothesized that brain tissue hypoxia was an independent predictor of outcome in patients wih severe TBI, irrespective of elevated ICP and of the severity of cerebral and systemic injury. Methods: This observational study was conducted at the Neurological ICU, Hospital of the University of Pennsylvania, an academic level I trauma center. Patients admitted with severe TBI who had PbtO2 and ICP monitoring were included in the study. PbtO2, ICP, mean arterial pressure (MAP) and cerebral perfusion pressure (CPP = MAP-ICP) were monitored continuously and recorded prospectively every 30 min. Using linear interpolation, duration and cumulative dose (area under the curve, AUC) of brain tissue hypoxia (PbtO2 < 15 mm Hg), elevated ICP >20 mm Hg and low CPP <60 mm Hg were calculated, and the association with outcome at hospital discharge, dichotomized as good (Glasgow Outcome Score [GOS] 4-5) vs. poor (GOS 1-3), was analyzed. Results: A total of 103 consecutive patients, monitored for an average of 5 days, was studied. Brain tissue hypoxia was observed in 66 (64%) patients despite ICP was < 20 mm Hg and CPP > 60 mm Hg (72 +/- 39% and 49 +/- 41% of brain hypoxic time, respectively). Compared with patients with good outcome, those with poor outcome had a longer duration of brain hypoxia (1.7 +/- 3.7 vs. 8.3 +/- 15.9 hrs, P<0.01), as well as a longer duration (11.5 +/- 16.5 vs. 21.6 +/- 29.6 hrs, P=0.03) and a greater cumulative dose (56 +/- 93 vs. 143 +/- 218 mm Hg*hrs, P<0.01) of elevated ICP. By multivariable logistic regression, admission Glasgow Coma Scale (OR, 0.83, 95% CI: 0.70-0.99, P=0.04), Marshall CT score (OR 2.42, 95% CI: 1.42-4.11, P<0.01), APACHE II (OR 1.20, 95% CI: 1.03-1.43, P=0.03), and the duration of brain tissue hypoxia (OR 1.13; 95% CI: 1.01-1.27; P=0.04) were all significantly associated with poor outcome. No independent association was found between the AUC for elevated ICP and outcome (OR 1.01, 95% CI 0.97-1.02, P=0.11) in our prospective cohort. Conclusions: In patients with severe TBI, brain tissue hypoxia is frequent, despite normal ICP and CPP, and is associated with poor outcome, independent of intracranial hypertension and the severity of cerebral and systemic injury. Our findings indicate that PbtO2 is a strong physiologic prognostic marker after TBI. Further study is warranted to examine whether PbtO2-directed therapy improves outcome in severely head-injured patients .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kawasaki disease is an acute vasculitis of childhood. Its clinical presentation is well known, and coronary artery aneurysms are classical complications. Shock and pleural or pericardiac effusion are rare presentations of the disease. In intensive care units, the disease may be mistaken for septic shock or toxic shock syndrome. Owing to the fact that immunoglobulin therapy improves the course of the disease, especially if given early, and thus the diagnosis should not be delayed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Providing analgesia without suppressing motor or sensory function is a challenge for regional anesthesia and postoperative pain management. Resiniferatoxin (RTX), an ultrapotent agonist for transient receptor potential subtype-1 (TRPV1) can produce this selective blockade, as TRPV1 is selectively expressed on nociceptors. Futhermore, after peripheral nerve injury, spontaneous ectopic activity arises from all types of nerve fibers that can affect spinal neurons and glial cells. The goal of the present experiment is to determine whether spontaneous activity generated in C-fibers or in both A&C-fibers is required for microglia activation. Method: We applied RTX (0.01%) or bupivacaine microspheres to the sciatic nerve of rats to block the conduction of C-fibers or A&C-fibers, respectively, before spared nerve injury (SNI). Behavior was tested and all the rats were sacrificed 2 days later; immunohistochemistry was performed on their spinal cord for mitogen-activated protein kinase (MAPK) p38, bromodeoxyuridine (BrdU, marker of proliferation) and Iba1 (microglial marker). Result: At day 2 after SNI robust mechanical allodynia and p38 activation in spinal microglia were documented. There was also a substantial cell proliferation in the spinal cord, all proliferating cells (BrdU+) being microglia (Iba1+). RTX blocked heat sensitivity and produced heat hypoalgesia without affecting mechanical allodynia and motor function. Microglial proliferation and p38 activation in the spinal cord were not affected by RTX (p >0.05). In contrast, a complete sensory and motor blockade was seen with bupivacaine which also significantly inhibited p38 activation and microglial proliferation in the spinal cord (p <0.05). Conclusion: We conclude that (1) RTX can provide a selective nociceptive blockade but that (2) blocking only nociceptive fibers does not impair the development of mechanical allodynia and microglia activation. Therefore (3) if microglia activation is important for chronic pain development then specific nociceptive blockade won't be sufficient to prevent it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No-reflow phenomenon is a consequence of percutaneous coronary intervention (PCI) which arises most of the time in the setting of myocardial infarction, but can be also the consequence of PCI in stable angina patients (rotatablator ablation technique or angioplasty in saphenous vein grafts). In this review, we summarize two ways of treating the no-reflow according to the current literature. First through the pharmacological approach where several compounds have been assessed like adenosine, nitroprusside, verapamil, nicorandil, dipyridamole, epinephrine or cyclosporine. Second through the mechanical approach where few strategies have been examined like intra-aortic balloon pumping or postconditioning. Finally, we provide an algorithm for treating a no-reflow even though no studies showed a beneficial effect in terms of clinical endpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. RESULTS: SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. CONCLUSION: (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Transcatheter aortic valve replacement (TAVR) provides good results in selected high-risk patients. However, it is unclear whether this procedure carries advantages in extreme-risk profile patients with logistic EuroSCORE above 35%. METHODS: From January 2009 to July 2011, of a total number of 92 transcatheter aortic valve procedures performed, 40 'extreme-risk' patients underwent transapical TAVR (TA-TAVR) (EuroSCORE above 35%). Variables were analysed as risk factors for hospital and mid-term mortality, and a 2-year follow-up (FU) was obtained. RESULTS: The mean age was: 81 ± 10 years. Twelve patients (30%) had chronic pulmonary disease, 32 (80%) severe peripheral vascular disease, 14 (35%) previous cardiac surgery, 19 (48%) chronic renal failure (2 in dialysis), 7 (17%) previous stroke (1 with disabilities), 3 (7%) a porcelain aorta and 12 (30%) were urgent cases. Mean left ventricle ejection fraction (LVEF) was 49 ± 13%, and mean logistic EuroSCORE was 48 ± 11%. Forty stent-valves were successfully implanted with six Grade-1 and one Grade-2 paravalvular leakages (success rate: 100%). Hospital mortality was 20% (8 patients). Causes of death following the valve academic research consortium (VARC) definitions were: life-threatening haemorrhage (1), myocardial infarction (1), sudden death (1), multiorgan failure (2), stroke (1) and severe respiratory dysfunction (2). Major complications (VARC definitions) were: myocardial infarction for left coronary ostium occlusion (1), life-threatening bleeding (2), stroke (2) and acute kidney injury with dialysis (2). Predictors for hospital mortality were: conversion to sternotomy, life-threatening haemorrhage, postoperative dialysis and long intensive care unit (ICU) stay. Variables associated with hospital mortality were: conversion to sternotomy (P = 0.03), life-threatening bleeding (P = 0.02), acute kidney injury with dialysis (P = 0.03) and prolonged ICU stay (P = 0.02). Mean FU time was 24 months: actuarial survival estimates for all-cause mortality at 6 months, 1 year, 18 months and 2 years were 68, 57, 54 and 54%, respectively. Patients still alive at FU were in good clinical condition, New York Heart Association (NYHA) class 1-2 and were never rehospitalized for cardiac decompensation. CONCLUSIONS: TA-TAVR in extreme-risk patients carries a moderate risk of hospital mortality. Severe comorbidities and presence of residual paravalvular leakages affect the mid-term survival, whereas surviving patients have an acceptable quality of life without rehospitalizations for cardiac decompensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the relationship between hemoglobin (Hgb) and brain tissue oxygen tension (PbtO(2)) after severe traumatic brain injury (TBI) and to examine its impact on outcome. METHODS: This was a retrospective analysis of a prospective cohort of severe TBI patients whose PbtO(2) was monitored. The relationship between Hgb-categorized into four quartiles (≤9; 9-10; 10.1-11; >11 g/dl)-and PbtO(2) was analyzed using mixed-effects models. Anemia with compromised PbtO(2) was defined as episodes of Hgb ≤ 9 g/dl with simultaneous PbtO(2) < 20 mmHg. Outcome was assessed at 30 days using the Glasgow outcome score (GOS), dichotomized as favorable (GOS 4-5) vs. unfavorable (GOS 1-3). RESULTS: We analyzed 474 simultaneous Hgb and PbtO(2) samples from 80 patients (mean age 44 ± 20 years, median GCS 4 (3-7)). Using Hgb > 11 g/dl as the reference level, and controlling for important physiologic covariates (CPP, PaO(2), PaCO(2)), Hgb ≤ 9 g/dl was the only Hgb level that was associated with lower PbtO(2) (coefficient -6.53 (95 % CI -9.13; -3.94), p < 0.001). Anemia with simultaneous PbtO(2) < 20 mmHg, but not anemia alone, increased the risk of unfavorable outcome (odds ratio 6.24 (95 % CI 1.61; 24.22), p = 0.008), controlling for age, GCS, Marshall CT grade, and APACHE II score. CONCLUSIONS: In this cohort of severe TBI patients whose PbtO(2) was monitored, a Hgb level no greater than 9 g/dl was associated with compromised PbtO(2). Anemia with simultaneous compromised PbtO(2), but not anemia alone, was a risk factor for unfavorable outcome, irrespective of injury severity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.