940 resultados para MEAN-FIELD SIMULATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent adiabatic saddle-point method of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is applied to study strong-field photodetachment of H- by few-cycle linearly polarized laser pulses of frequencies near the two-photon detachment threshold. The behavior of the saddle points in the complex-time plane for a range of laser parameters is explored. A detailed analysis of the influence of laser intensities [(2×1011)–(6.5 × 1011) W/cm2], midinfrared laser wavelengths (1800–2700 nm), and various values of the carrier envelope phase (CEP) on (i) three-dimensional probability detachment distributions, (ii) photoangular distributions (PADs), (iii) energy spectra, and (iv) momentum distributions are presented. Examination of the probability distributions and PADs reveal main lobes and jetlike structures. Bifurcation phenomena in the probability distributions and PADs are also observed as the wavelength and intensity increase. Our simulations show that the (i) probability distributions, (ii) PADs, and (iii) energy spectra are extremely sensitive to the CEP and thus measuring such distributions provides a useful tool for determining this phase. The symmetrical properties of the electron momentum distributions are also found to be strongly correlated with the CEP and this provides an additional robust method for measuring the CEP of a laser pulse. Our calculations further show that for a three-cycle pulse inclusion of all eight saddle points is required in the evaluation of the transition amplitude to yield an accurate description of the photodetachment process. This is in contrast to recent results for a five-cycle pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow responsive passive samplers offer considerable potential in nutrient monitoring in catchments; bridging the gap between the intermittency of grab sampling and the high cost of automated monitoring systems. A commercially available passive sampler was evaluated in a number of river systems encapsulating a gradient in storm response, combinations of diffuse and point source pressures, and levels of phosphorus and nitrogen concentrations. Phosphorus and nitrogen are sequestered to a resin matrix in a permeable cartridge positioned in line with streamflow. A salt tracer dissolves in proportion to advective flow through the cartridge. Multiple deployments of different cartridge types were undertaken and the recovery of P and N compared with the flow-weighted mean concentration (FWMC) from high-resolution bank-side analysers at each site. Results from the passive samplers were variable and largely underestimated the FWMC derived from the bank-side analysers. Laboratory tests using ambient river samples indicated good replication of advective throughflow using pumped water, although this appeared not to be a good analogue of river conditions where flow divergence was possible. Laboratory tests also showed good nutrient retention but not elution and these issues appeared to combine to limit the utility in ambient river systems at the small catchment scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional Monte Carlo code for modelling radiation transport in Type Ia supernovae is described. In addition to tracking Monte Carlo quanta to follow the emission, scattering and deposition of radiative energy, a scheme involving volume-based Monte Carlo estimators is used to allow properties of the emergent radiation field to be extracted for specific viewing angles in a multidimensional structure. This eliminates the need to compute spectra or light curves by angular binning of emergent quanta. The code is applied to two test problems to illustrate consequences of multidimensional structure on the modelling of light curves. First, elliptical models are used to quantify how large-scale asphericity can introduce angular dependence to light curves. Secondly, a model which incorporates complex structural inhomogeneity, as predicted by modern explosion models, is used to investigate how such structure may affect light-curve properties. © 2006 RAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To compare the ability of Glaucoma Progression Analysis (GPA) and Threshold Noiseless Trend (TNT) programs to detect visual-field deterioration.

METHODS: Patients with open-angle glaucoma followed for a minimum of 2 years and a minimum of seven reliable visual fields were included. Progression was assessed subjectively by four masked glaucoma experts, and compared with GPA and TNT results. Each case was judged to be stable, deteriorated or suspicious of deterioration

RESULTS: A total of 56 eyes of 42 patients were followed with a mean of 7.8 (SD 1.0) tests over an average of 5.5 (1.04) years. Interobserver agreement to detect progression was good (mean kappa = 0.57). Progression was detected in 10-19 eyes by the experts, in six by GPA and in 24 by TNT. Using the consensus expert opinion as the gold standard (four clinicians detected progression), the GPA sensitivity and specificity were 75% and 83%, respectively, while the TNT sensitivity and specificity was 100% and 77%, respectively.

CONCLUSION: TNT showed greater concordance with the experts than GPA in the detection of visual-field deterioration. GPA showed a high specificity but lower sensitivity, mainly detecting cases of high focality and pronounced mean defect slopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the changes in the Visual Field Index (VFI) in eyes with perimetric glaucomatous progression, and to compare these against stable glaucoma patients.

PATIENTS AND METHODS: Consecutive patients with open angle glaucoma with a minimum of 6 reliable visual fields and 2 years of follow-up were identified. Perimetric progression was assessed by 4 masked glaucoma experts from different units, and classified into 3 categories: "definite progression," "suspected progression," or "no progression." This was compared with the Glaucoma Progression Analysis (GPA) II and VFI linear regression analysis, where progression was defined as a negative slope with significance of <5%.

RESULTS: Three hundred ninety-seven visual fields from 51 eyes of 39 patients were assessed. The mean number of visual fields was 7.8 (SD 1.1) per eye, and the mean follow-up duration was 63.7 (SD 13.4) months. The mean VFI linear regression slope showed an overall statistically significant difference (P<0.001, analysis of variance) for each category of progression. Using expert consensus opinion as the reference standard, both VFI analysis and GPA II had high specificity (0.93 and 0.90, respectively), but relatively low sensitivity (0.45 and 0.41, respectively).

CONCLUSIONS: The mean VFI regression slope in our cohort of eyes without perimetric progression showed a statistically significant difference compared with those with suspected and definite progression. VFI analysis and GPA II both had similarly high specificity but low sensitivity when compared with expert consensus opinion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg-1, with mean As concentration 64.44 mg kg-1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg-1 dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg-1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root » soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg-1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-consistent interaction between energetic particles and self-generated hydromagnetic waves in a cosmic ray pressure dominated plasma is considered. Using a three-dimensional hybrid magnetohydrodynamics (MHD)-kinetic code, which utilizes a spherical harmonic expansion of the Vlasov-Fokker-Planck equation, high-resolution simulations of the magnetic field growth including feedback on the cosmic rays are carried out. It is found that for shocks with high cosmic ray acceleration efficiency, the magnetic fields become highly disorganized, resulting in near isotropic diffusion, independent of the initial orientation of the ambient magnetic field. The possibility of sub-Bohm diffusion is demonstrated for parallel shocks, while the diffusion coefficient approaches the Bohm limit from below for oblique shocks. This universal behaviour suggests that Bohm diffusion in the root-mean-squared field inferred from observation may provide a realistic estimate for the maximum energy acceleration time-scale in young supernova remnants. Although disordered, the magnetic field is not self-similar suggesting a non-uniform energy-dependent behaviour of the energetic particle transport in the precursor. Possible indirect radiative signatures of cosmic ray driven magnetic field amplification are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We simulate and discuss the local electric-field enhancement in a system of a dielectric nanoparticle placed very near to a metallic substrate. We use finite-element numerical simulations in order to understand the field-enhancement mechanism in this dielectric NP-on-mirror system. Under appropriate excitation conditions, the gap between the particle and the substrate becomes a "hot spot", i.e., a region of intense electromagnetic field. We also show how the optical properties of the dielectric NP placed on a metallic substrate affect the plasmonic field enhancement in the nanogap and characterize the confinement in the gap. Our study helps to understand and design systems with dielectric NPs on metallic substrates which can be equally as effective for SERS, fluorescence, and nonlinear phenomena as conventional all plasmonic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m-3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m-3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.