850 resultados para MALARIA PARASITE
Resumo:
Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite’s lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.
Resumo:
Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000–50,000 years. This inference derives from the virtual or complete absence of synonymous nucleotide polymorphisms at genes not involved in immune or drug responses. Seeking to conciliate this claim with extensive antigenic polymorphism, we first note that allele substitutions or polymorphisms can arise very rapidly, even in a single generation, in large populations subject to strong natural selection. Second, new alleles can arise not only by single-nucleotide mutations, but also by duplication/deletion of short simple-repeat DNA sequences, a process several orders of magnitude faster than single-nucleotide mutation. We analyze three antigenic genes known to be extremely polymorphic: Csp, Msp-1, and Msp-2. We identify regions consisting of tandem or proximally repetitive short DNA sequences, including some previously unnoticed. We conclude that the antigenic polymorphisms are consistent with the recent origin of the world populations of P. falciparum inferred from the analysis of nonantigenic genes.
Resumo:
The circumsporozoite (CS) protein of malaria parasites (Plasmodium) covers the surface of sporozoites that invade hepatocytes in mammalian hosts and macrophages in avian hosts. CS genes have been characterized from many Plasmodium that infect mammals; two domains of the corresponding proteins, identified initially by their conservation (region I and region II), have been implicated in binding to hepatocytes. The CS gene from the avian parasite Plasmodium gallinaceum was characterized to compare these functional domains to those of mammalian Plasmodium and for the study of Plasmodium evolution. The P. gallinaceum protein has the characteristics of CS proteins, including a secretory signal sequence, central repeat region, regions of charged amino acids, and an anchor sequence. Comparison with CS signal sequences reveals four distinct groupings, with P. gallinaceum most closely related to the human malaria Plasmodium falciparum. The 5-amino acid sequence designated region I, which is identical in all mammalian CS and implicated in hepatocyte invasion, is different in the avian protein. The P. gallinaceum repeat region consists of 9-amino acid repeats with the consensus sequence QP(A/V)GGNGG(A/V). The conserved motif designated region II-plus, which is associated with targeting the invasion of liver cells, is also conserved in the avian protein. Phylogenetic analysis of the aligned Plasmodium CS sequences yields a tree with a topology similar to the one obtained using sequence data from the small subunit rRNA gene. The phylogeny using the CS gene supports the proposal that the human malaria P. falciparum is significantly more related to avian parasites than to other parasites infecting mammals, although the biology of sporozoite invasion is different between the avian and mammalian species.
Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum.
Resumo:
Plasmodium falciparum is the major causative agent of malaria, a disease of worldwide importance. Resistance to current drugs such as chloroquine and mefloquine is spreading at an alarming rate, and our antimalarial armamentarium is almost depleted. The malarial parasite encodes two homologous aspartic proteases, plasmepsins I and II, which are essential components of its hemoglobin-degradation pathway and are novel targets for antimalarial drug development. We have determined the crystal structure of recombinant plasmepsin II complexed with pepstatin A. This represents the first reported crystal structure of a protein from P. falciparum. The crystals contain molecules in two different conformations, revealing a remarkable degree of interdomain flexibility of the enzyme. The structure was used to design a series of selective low molecular weight compounds that inhibit both plasmepsin II and the growth of P. falciparum in culture.
Resumo:
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.
Resumo:
We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.
Resumo:
The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo.
Resumo:
The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.
Resumo:
Hamilton and Zuk [Hamilton, W. D. & Zuk, M. (1982) Science 218, 384-387] proposed that females choosing mates based on the degree of expression of male characters obtain heritable parasite resistance for their offspring. Alternatively, the "contagion indicator" hypothesis posits that females choose mates based on the degree of expression of male characters because the latter indicate a male's degree of infestation of parasites and thus the risk that choosing females and their offspring will acquire these parasites. I examined whether parasite transmittability affects the probability that parasite intensity and male mating success are negatively correlated in intraspecific studies of parasite-mediated sexual selection. When females risk infection of themselves or their future offspring as a result of mating with a parasitized male, negative relationships between parasite intensity and male mating success are significantly more likely to occur than when females do not risk such infection. The direct benefit to females of avoiding parasitic infection is proposed to lead to the linkage between variable secondary sexual characters and the intensity of transmittable parasites. The direct benefits of avoiding associatively transmittable parasites should be considered in future studies of parasite-mediated sexual selection.
Resumo:
Fecally dispersed parasites of 12 wild mammal species in Mudumalai Sanctuary, southern India, were studied. Fecal propagule densities and parasite diversity measures were correlated with host ecological variables. Host species with higher predatory pressure had lower parasite loads and parasite diversity. Host body weight, home range, population density, gregariousness, and diet did not show predicted effects on parasite loads. Measures of alpha diversity were positively correlated with parasite abundance and were negatively correlated with beta diversity. Based on these data, hypotheses regarding determinants of parasite community are discussed.
Resumo:
To provide tools for functional molecular genetics of the protozoan parasite Entamoeba histolytica, we investigated the use of the prokaryotic neomycin phosphotransferase (NEO) gene as a selectable marker for the transfection of the parasite. An Escherichia coli-derived plasmid vector was constructed (pA5'A3'NEO) containing the NEO coding region flanked by untranslated 5' and 3' sequences of an Ent. histolytica actin gene. Preceding experiments had revealed that amoebae are highly sensitive to the neomycin analogue G418 and do not survive in the presence of as little as 2 micrograms/ml. Transfection of circular pA5'A3'NEO via electroporation resulted in Ent. histolytica trophozoites resistant to G418 up to 100 micrograms/ml. DNA and RNA analyses of resistant cells indicated that (i) the transfected DNA was not integrated into the amoeba genome but was segregated episomally, (ii) in the amoebae, the plasmid replicated autonomously, (iii) the copy number of the plasmid and the expression of NEO-specific RNA were proportional to the amount of G418 used for selection, and (iv) under continuous selection, the plasmid was propagated over an observation period of 6 months. Moreover, the plasmid could be recloned into E. coli and was found to be unrearranged. To investigate the use of pA5'A3'NEO to coexpress other genes in Ent. histolytica, a second marker, the prokaryotic chloramphenicol acetyltransferase (CAT) gene under control of an Ent. histolytica lectin gene promoter was introduced into the plasmid. Transfection of the amoebae with this construct also conferred G418 resistance and, in addition, allowed continuous expression of CAT activity in quantities corresponding to the amount of G418 used for selection. When selection was discontinued, transfected plasmids were lost as indicated by an exponential decline of CAT activity in trophozoite extracts.
Resumo:
Nonhomologous integration vectors have been used to demonstrate the feasibility of insertional mutagenesis in haploid tachyzoites of the protozoan parasite Toxoplasma gondii. Mutant clones resistant to 5-fluorouracil were identified at a frequency of approximately 10(-6) (approximately 2 x 10(-5) of the stable transformants). Four independent mutants were isolated, all of which were shown to lack uracil phosphoribosyl-transferase (UPRT) activity and harbor transgenes integrated at closely linked loci, suggesting inactivation of the UPRT-encoding gene. Genomic DNA flanking the insertion point (along with the integrated vector) was readily recovered by bacterial transformation with restriction-digested, self-ligated total genomic DNA. Screening of genomic libraries with the recovered fragment identified sequences exhibiting high homology to known UPRT-encoding genes from other species, and cDNA clones were isolated that contain a single open reading frame predicted to encode the 244-amino acid enzyme. Homologous recombination vectors were exploited to create genetic knock-outs at the UPRT locus, which are deficient in enzyme activity but can be complemented by transient transformation with wild-type sequences--formally confirming identification of the functional UPRT gene. Mapping of transgene insertion points indicates that multiple independent mutants arose from integration at distinct sites within the UPRT gene, suggesting that nonhomologous integration is sufficiently random to permit tagging of the entire parasite genome in a single transformation.
Resumo:
Immunization of rodents and humans with irradiation-attenuated malaria sporozoites confers preerythrocytic stage-specific protective immunity to challenge infection. This immunity is directed against intrahepatic parasites and involves T cells and interferon gamma, which prevent development of exoerythrocytic stages and subsequent blood infection. The present study was undertaken to determine how protective immunity is achieved after immunization of rodent hosts with irradiated Plasmodium berghei sporozoites. We present evidence that irradiated parasites persist in hepatocytes of rats and mice for up to 6 months after immunization. A relationship between the persistence of parasites and the maintenance of protective immunity was observed. Protective immunity was abrogated in irradiated-sporozoite-immunized rats following the application of chemotherapy to remove preexisting liver parasites. Additionally, protective immunity against sporozoite challenge was established in rats vaccinated with early and late hepatic stages of irradiated parasites. These results show that irradiation-attenuated sporozoites produce persistent intrahepatic stages in vivo necessary for the induction and maintenance of protective immunity.
Resumo:
Toxoplasma gondii is a coccidian parasite with a global distribution. The definitive host is the cat (and other felids). All warm-blooded animals can act as intermediate hosts, including humans. Sexual reproduction (gametogony) takes place in the final host and oocysts are released in the environment, where they then sporulate to become infective. In intermediate hosts the cycle is extra-intestinal and results in the formation of tachyzoites and bradyzoites. Tachyzoites represent the invasive and proliferative stage and on entering a cell it multiplies asexually by endodyogeny. Bradyzoites within tissue cysts are the latent form. T. gondii is a food-borne parasite causing toxoplasmosis, which can occur in both animals and humans. Infection in humans is asymptomatic in more than 80% of cases in Europe and North-America. In the remaining cases patients present fever, cervical lymphadenopathy and other non-specific clinical signs. Nevertheless, toxoplasmosis is life threatening if it occurs in immunocompromised subjects. The main organs involved are brain (toxoplasmic encephalitis), heart (myocarditis), lungs (pulmonary toxoplasmosis), eyes, pancreas and parasite can be isolated from these tissues. Another aspect is congenital toxoplasmosis that may occur in pregnant women and the severity of the consequences depends on the stage of pregnancy when maternal infection occurs. Acute toxoplasmosis in developing foetuses may result in blindness, deformation, mental retardation or even death. The European Food Safety Authority (EFSA), in recent reports on zoonoses, highlighted that an increasing numbers of animals resulted infected with T. gondii in EU (reported by the European Member States for pigs, sheep, goats, hunted wild boar and hunted deer, in 2011 and 2012). In addition, high prevalence values have been detected in cats, cattle and dogs, as well as several other animal species, indicating the wide distribution of the parasite among different animal and wildlife species. The main route of transmission is consumption of food and water contaminated with sporulated oocysts. However, infection through the ingestion of meat contaminated with tissue cysts is frequent. Finally, although less frequent, other food products contaminated with tachyzoites such as milk, may also pose a risk. The importance of this parasite as a risk for human health was recently highlighted by EFSA’s opinion on modernization of meat inspection, where Toxoplasma gondii was identified as a relevant hazard to be addressed in revised meat inspection systems for pigs, sheep, goats, farmed wild boar and farmed deer (Call for proposals -GP/EFSA/BIOHAZ/2013/01). The risk of infection is more highly associated to animals reared outside, also in free-range or organic farms, where biohazard measure are less strict than in large scale, industrial farms. Here, animals are kept under strict biosecurity measures, including barriers, which inhibit access by cats, thus making soil contamination by oocysts nearly impossible. A growing demand by the consumer for organic products, coming from free-range livestock, in respect of animal-welfare, and the desire for the best quality of derived products, have all led to an increase in the farming of free-range animals. The risk of Toxoplasma gondii infection increases when animals have access to environment and the absence of data in Italy, together with need for in depth study of both the prevalence and genotypes of Toxoplasma gondii present in our country were the main reasons for the development of this thesis project. A total of 152 animals have been analyzed, including 21 free-range pigs (Suino Nero race), 24 transhumant Cornigliese sheep, 77 free-range chickens and 21 wild animals. Serology (on meat juice) and identification of T. gondii DNA through PCR was performed on all samples, except for wild animals (no serology). An in-vitro test was also applied with the aim to find an alternative and valid method to bioassay, actually the gold standard. Meat samples were digested and seeded onto Vero cells, checked every day and a RT-PCR protocol was used to determine an eventual increase in the amount of DNA, demonstrating the viability of the parasite. Several samples were alos genetically characterized using a PCR-RFLP protocol to define the major genotypes diffused in the geographical area studied. Within the context of a project promoted by Istituto Zooprofilattico of Pavia and Brescia (Italy), experimentally infected pigs were also analyzed. One of the aims was to verify if the production process of cured “Prosciutto di Parma” is able to kill the parasite. Our contribution included the digestion and seeding of homogenates on Vero cells and applying the Elisa test on meat juice. This thesis project has highlighted widespread diffusion of T. gondii in the geographical area taken into account. Pigs, sheep, chickens and wild animals showed high prevalence of infection. The data obtained with serology were 95.2%, 70.8%, 36.4%, respectively, indicating the spread of the parasite among numerous animal species. For wild animals, the average value of parasite infection determined through PCR was 44.8%. Meat juice serology appears to be a very useful, rapid and sensitive method for screening carcasses at slaughterhouse and for marketing “Toxo-free” meat. The results obtained on fresh pork meat (derived from experimentally infected pigs) before (on serum) and after (on meat juice) slaughter showed a good concordance. The free-range farming put in evidence a marked risk for meat-producing animals and as a consequence also for the consumer. Genotyping revealed the diffusion of Type-II and in a lower percentage of Type-III. In pigs is predominant the Type-II profile, while in wildlife is more diffused a Type-III and mixed profiles (mainly Type-II/III). The mixed genotypes (Type-II/III) could be explained by the presence of mixed infections. Free-range farming and the contact with wildlife could facilitate the spread of the parasite and the generation of new and atypical strains, with unknown consequences on human health. The curing process employed in this study appears to produce hams that do not pose a serious concern to human health and therefore could be marketed and consumed without significant health risk. Little is known about the diffusion and genotypes of T. gondii in wild animals; further studies on the way in which new and mixed genotypes may be introduced into the domestic cycle should be very interesting, also with the use of NGS techniques, more rapid and sensitive than PCR-RFLP. Furthermore wildlife can become a valuable indicator of environmental contamination with T. gondii oocysts. Other future perspectives regarding pigs include the expansion of the number of free-range animals and farms and for Cornigliese sheep the evaluation of other food products as raw milk and cheeses. It should be interesting to proceed with the validation of an ELISA test for infection in chickens, using both serum and meat juice on a larger number of animals and the same should be done also for wildlife (at the moment no ELISA tests are available and MAT is the reference method for them). Results related to Parma ham do not suggest a concerning risk for consumers. However, further studies are needed to complete the risk assessment and the analysis of other products cured using technological processes other than those investigated in the present study. For example, it could be interesting to analyze products such as salami, produced with pig meat all over the Italian country, with very different recipes, also in domestic and rural contexts, characterized by a very short period of curing (1 to 6 months). Toxoplasma gondii is one of the most diffuse food-borne parasites globally. Public health safety, improved animal production and protection of endangered livestock species are all important goals of research into reliable diagnostic tools for this infection. Future studies into the epidemiology, parasite survival and genotypes of T. gondii in meat producing animals should continue to be a research priority.