956 resultados para M2 macrophages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hypoxic/anoxic microenvironment has been proposed to exist within a vascular lesion due to intimal or medial cell proliferation in vascular diseases. Here, we examined whether hypoxia alters macrophage function by exposing murine macrophage-like RAW 264.7 (RAW) cells to hypoxia (2% O2). When cells were exposed to hypoxia, a significant number of RAW cells underwent apoptosis. Additionally, small subpopulations of RAW cells were resistant to hypoxia-induced apoptosis. Through repeated cycles of hypoxia exposure, hypoxia-induced apoptosis-resistant macrophages (HARMs) were selected; HARM cells demonstrate >70% resistance to hypoxia-induced apoptosis, as compared with the parental RAW cells. When heat shock protein (HSP) expression was examined after hypoxia, we observed a significant decrease in constitutive heat shock protein 70 (HSC 70) in RAW cells, but not in HARMs, as compared with the control normoxic condition (21% O2). In contrast, the expression level of glucose-regulated protein 78 (GRP 78) in RAW and HARM cells after hypoxia treatment was not altered, suggesting that HSC 70 and not GRP 78 may play a role in protection against hypoxia-induced apoptosis. When tumor necrosis factor α (TNF-α) production was examined after hypoxic treatment, a significant increase in TNF-α production in HARM but decrease in RAW was observed, as compared with cells cultured in normoxic conditions. HARM cells also exhibit a much lower level of modified-LDL uptake than do RAW cells, suggesting that HARMs may not transform into foam cells. These results suggest that a selective population of macrophages may adapt to potentially pathological hypoxic conditions by overcoming the apoptotic signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor receptor (TNFR) p55-knockout (KO) mice are susceptible profoundly to Salmonella infection. One day after peritoneal inoculation, TNFR-KO mice harbor 1,000-fold more bacteria in liver and spleen than wild-type mice despite the formation of well organized granulomas. Macrophages from TNFR-KO mice produce abundant quantities of reactive oxygen and nitrogen species in response to Salmonella but nevertheless exhibit poor bactericidal activity. Treatment with IFN-γ enhances killing by wild-type macrophages but does not restore the killing defect of TNFR-KO cells. Bactericidal activity of macrophages can be abrogated by a deletion in the gene encoding TNFα but not by saturating concentrations of TNF-soluble receptor, suggesting that intracellular TNFα can regulate killing of Salmonella by macrophages. Peritoneal macrophages from TNFR-KO mice fail to localize NADPH oxidase-containing vesicles to Salmonella-containing vacuoles. A TNFR-KO mutation substantially restores virulence to an attenuated mutant bacterial strain lacking the type III secretory system encoded by Salmonella pathogenicity island 2 (SPI2), suggesting that TNFα and SPI2 have opposing actions on a common pathway of vesicular trafficking. TNFα–TNFRp55 signaling plays a critical role in the immediate innate immune response to an intracellular pathogen by optimizing the delivery of toxic reactive oxygen species to the phagosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afipia felis is a Gram-negative bacterium that causes some cases of human Cat Scratch Disease. A. felis can survive and multiply in several mammalian cell types, including macrophages, but the precise intracellular compartmentalization of A. felis-containing phagosomes is unknown. Here, we demonstrate that, in murine macrophages, most A. felis-containing phagosomes exclude lysosomal tracer loaded into macrophage lysosomes before, as well as endocytic tracer loaded after, establishment of an infection. Established Afipia-containing phagosomes possess neither early endosomal marker proteins [early endosome antigen 1 (EEA1), Rab5, transferrin receptor, trytophane aspartate containing coat protein (TACO)] nor late endosomal or lysosomal proteins [cathepsin D, β-glucuronidase, vacuolar proton-pumping ATPase, rab7, mannose-6-phosphate receptor, vesicle-associated membrane protein 8, lysosome-associated membrane proteins LAMP-1 and LAMP-2]. Those bacteria that will be found in a nonendosomal compartment enter the macrophage via an EEA1-negative compartment, which remains negative for LAMP-1. The smaller subpopulation of afipiae whose phagosomes will be part of the endocytic system enters into an EEA1-positive compartment, which also subsequently acquires LAMP-1. Killing of Afipia or opsonization with immune antibodies leads to a strong increase in the percentage of A. felis-containing phagosomes that interact with the endocytic system. We conclude that most phagosomes containing A. felis are disconnected from the endosome–lysosome continuum, that their unusual compartmentalization is decided at uptake, and that this compartmentalization requires bacterial viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual information in primates is relayed from the dorsal lateral geniculate nucleus to the cerebral cortex by three parallel neuronal channels designated the parvocellular, magnocellular, and interlaminar pathways. Here we report that m2 muscarinic acetylcholine receptor in the macaque monkey visual cortex is selectively associated with synaptic circuits subserving the function of only one of these channels. The m2 receptor protein is enriched both in layer IV axons originating from parvocellular layers of the dorsal lateral geniculate nucleus and in cytochrome oxidase poor interblob compartments in layers II and III, which are linked with the parvocellular pathway. In these compartments, m2 receptors appear to be heteroreceptors, i.e., they are associated predominantly with asymmetric, noncholinergic synapses, suggesting a selective role in the modulation of excitatory neurotransmission through the parvocellular visual channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding of agonists to nicotinic acetylcholine receptors generates a sequence of changes that activate a cation-selective conductance. By measuring electrophysiological responses in chimeric alpha7/alpha3 receptors expressed in Xenopus oocytes, we have showed the involvement of the M2-M3 loop in coupling agonist binding to the channel gate. An aspartate residue therein, Asp-266 in the alpha7 subunit, was identified by site-directed mutagenesis as crucial, since mutants at this position exhibited very poor functional responses to three different nicotinic agonists. We have extended this investigation to another neuronal nicotinic receptor (alpha3/beta4), and found that a homologous residue in the beta4 subunit, Asp-268, played a similar role in coupling. These findings are consistent with a hypothesis that the aspartate residue in the M2-M3 loop, which is conserved in all homomer-forming alpha-type subunits and all neuronal beta-type subunits that combine to form functional receptors, is a major determinant of information transmission from binding site to channel gate in all neuronal nicotinic receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to elucidate the role of the proteasome pathway or multicatalytic proteinase complex in the induction of immunologic nitric oxide (NO) synthase (iNOS) in rat alveolar macrophages activated by lipopolysaccharide. Macrophages were incubated in the presence of lipopolysaccharide plus test agent for up to 24 hr. Culture media were analyzed for accumulation of stable oxidation products of NO (NO2- + N03-, designated as NOX-), cellular RNA was extracted for determination of iNOS mRNA levels by Northern blot analysis, and nuclear extracts were prepared for determination of NF-kappa B by electrophoretic mobility-shift assay. Inhibitors of calpain (alpha-N-acetyl-Leu-Leu-norleucinal; N-benzyloxycarbonyl-Leu-leucinal) and the proteasome (N-benzyloxycarbonyl-Ile-Glu-(O-t-Bu)-Ala-leucinal) markedly inhibited or abolished the induction of iNOS in macrophages. The proteinase inhibitors interfered with lipopolysaccharide-induced NOX- production by macrophages, and this effect was accompanied by comparable interference with the appearance of both iNOS mRNA and NF-kappa B. Calpain inhibitors elicited effects at concentrations of 1-100 microM, whereas the proteasome inhibitor was 1000-fold more potent, producing significant inhibitory effects at 1 nM. The present findings indicate that the proteasome pathway is essential for lipopolysaccharide-induced expression of the iNOS gene in rat alveolar macrophages. Furthermore, the data support the view that the proteasome pathway is directly involved in promoting the activation of NF-kappa B and that the induction of iNOS by lipopolysaccharide involves the transcriptional action of NF-kappaB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of macrophages by bacterial lipopolysaccharide (LPS) induces transcription of genes that encode for proinflammatory regulators of the immune response. Previous work has suggested that activation of the transcription factor activator protein 1 (AP-1) is one LPS-induced event that mediates this response. Consistent with this notion, we found that LPS stimulated AP-1-mediated transcription of a transfected reporter gene in the murine macrophage cell line RAW 264.7. As AP-1 activity is regulated in part by activation of the c-Jun N-terminal kinase (JNK), which phosphorylates and subsequently increases the transcriptional activity of c-Jun, we examined whether LPS treatment of macrophages resulted in activation of this kinase. LPS treatment of RAW 264.7 cells, murine bone marrow-derived macrophages, and the human monocyte cell line THP-1 resulted in rapid activation of the p46 and p54 isoforms of JNK. Treatment with wild-type and rough mutant forms of LPS and synthetic lipid A resulted in JNK activation, while pretreatment with the tyrosine kinase inhibitor herbimycin A inhibited this response. Binding of LPS-LPS binding protein (LBP) complexes to CD14, a surface receptor that mediates many LPS responses, was found to be crucial, as pretreatment of THP-1 cells with the monoclonal antibody 60b, which blocks this binding, inhibited JNK activation. These results suggest that LPS activation of JNK in monocyte/macrophage cells is a CD14- and protein tyrosine phosphorylation-dependent event that may mediate the early activation of AP-1 in regulating LPS-triggered gene induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free radicals nitric oxide and superoxide anion react to form peroxynitrite (ONOO-), a highly toxic oxidant species. In vivo formation of ONOO- has been demonstrated in shock and inflammation. Herein we provide evidence that cytotoxicity in cells exposed to ONOO- is mediated by DNA strand breakage and the subsequent activation of the DNA repair enzyme poly(ADP ribose) synthetase (PARS). Exposure to ONOO- (100 microM to 1 mM) inhibited mitochondrial respiration in cultured J774 macrophages and in rat aortic smooth muscle cells. The loss of cellular respiration was rapid, peaking 1-3 h after ONOO- exposure, and reversible, with recovery after a period of 6-24 h. The inhibition of mitochondrial respiration was paralleled by a dose-dependent increase in DNA strand breakage, reaching its maximum at 20-30 min after exposure to ONOO-. We observed a dose-dependent increase in the activity of PARS in cells exposed to ONOO-. Inhibitors of PARS such as 3-aminobenzamide (1 mM) prevented the inhibition of cellular respiration in cells exposed to ONOO-. Activation of PARS by ONOO--mediated DNA strand breakage resulted in a significant decrease in intracellular energy stores, as reflected by a decline of intracellular NAD+ and ATP content. 3-Aminobenzamide prevented the loss of NAD+ and ATP in cells exposed to ONOO-. In contrast, impairment of cellular respiration by the addition of the nitric oxide donors S-nitroso-N-acetyl-DL-penicillamine or diethyltriamine nitric oxide complex, was not associated with the development of DNA strand breaks, in concentrations up to 1 mM, and was largely refractory to PARS inhibition. Our results suggest that DNA damage and activation of PARS, an energy-consuming futile repair cycle, play a central role in ONOO--mediated cellular injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.