943 resultados para Low Density Lipoprotein Cholesterol
Resumo:
Mono- and bi-allelic mutations in the low-density lipoprotein receptor related protein 5 (LRP5) may cause osteopetrosis, autosomal dominant and recessive exudative vitreoretinopathy, juvenile osteoporosis, or persistent hyperplastic primary vitreous (PHPV). We report on a child affected with PHPV and carrying compound mutations. The father carried the splice mutation and suffered from severe bone fragility since childhood. The mother carried the missense mutation without any clinical manifestations. The genetic diagnosis of their child allowed for appropriate treatment in the father and for the detection of osteopenia in the mother. Mono- and bi-allelic mutations in LRP5 may cause osteopetrosis, autosomal dominant and recessive exudative vitreoretinopathy, juvenile osteoporosis, or PHPV. PHPV is a component of persistent fetal vasculature of the eye, characterized by highly variable expressivity and resulting in a wide spectrum of anterior and/or posterior congenital developmental defects, which may lead to blindness. We evaluated a family diagnosed with PHPV in their only child. The child presented photophobia during the first 3 weeks of life, followed by leukocoria at 2 months of age. Molecular resequencing of NDP, FZD4, and LRP5 was performed in the child and segregation of the observed mutations in the parents. At presentation, fundus examination of the child showed a retrolental mass in the right eye. Ultrasonography revealed retinal detachment in both eyes. Thorough familial analysis revealed that the father suffered from many fractures since childhood without specific fragility bone diagnosis, treatment, or management. The mother was asymptomatic. Molecular analysis in the proband identified two mutations: a c.[2091+2T>C] splice mutation and c.[1682C>T] missense mutation. We report the case of a child affected with PHPV and carrying compound heterozygous LRP5 mutations. This genetic diagnosis allowed the clinical diagnosis of the bone problem to be made in the father, resulting in better management of the family. It also enabled preventive treatment to be prescribed for the mother and accurate genetic counseling to be provided.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
Abstract. Excessive alcohol consumption is associated with increased morbidity and mortality as well as with labour and traffic accidents. However, current evidence suggests beneficial effects of moderate drinking on cardiovascular events including coronary heart disease, ischaemic stroke, peripheral arterial disease and congestive heart failure. The underlying mechanisms to explain these protective effects against coronary heart disease include an increase in high-density lipoprotein cholesterol and an increase in insulin sensitivity, and a decrease in platelet aggregation and circulating concentrations of fibrinogen. However, there are discrepancies regarding the specific effects of different types of beverages on the cardiovascular system, and also whether the possible protective effects of alcoholic beverages are due to their alcohol component (ethanol) or non-alcoholic products containing, mainly polyphenols. Recent randomised clinical trials have shown that wine, a polyphenol-rich alcoholic beverage, provides higher antioxidant and anti-inflammatory effects than some spirits such as gin, a polyphenol-free alcoholic beverage. In addition, dealcoholized red wine decreases blood pressure through a nitric oxide mediated mechanism, suggesting a protective effect of polyphenols on vascular function. Other studies performed in women have observed that daily doses of 1520 g of alcohol as red wine are sufficient to elicit protective effects similar to those observed in men who consumed higher doses of wine. In conclusion, moderate consumption of wine exerts a protective effect on biomarkers related to the progression and development of atherosclerosis due to its alcoholic (ethanol) and non-alcoholic (polyphenols) content. Women are more sensitive to the beneficial effects of wine.
Resumo:
Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.
Resumo:
Background: In the past, oxidized low density lipoprotein (ox-LDL) has been associated with an unbeneficial lipid profile. This atherogenic lipid profile increases the risk of atherosclerotic cardiovascular diseases. Physical fitness has substantial effect on serum lipoprotein concentration as well as body composition and humoral responses, however interrelationships between ox-LDL and physical fitness have not been widely examined in a nationally representative sample. Aims: This thesis evaluates how cardiorespiratory and muscular fitness associate with ox-LDL lipids and how the other known risk factors of atherosclerosis might alter these associations. Subjects and Methods: The study cohort consisted of 846 healthy young males (mean age 25.1, SD 4.6) who were gathered by voluntary nationwide recruitment. Each participant conducted a series of physical fitness tests (cardiorespiratory and muscular fitness) and answered a detailed questionnaire that included lifestyle habits (i.e. smoking and leisuretime physical activity). Venous blood samples including ox-LDL and serum lipids were also collected. Results: Higher levels of ox-LDL were found in overweight and obese men, however, high cardiorespiratory fitness seemed to protect the overweight from high levels of ox-LDL. Young men who smoked and had poor cardiorespiratory or muscular fitness possessed a higher concentration of ox-LDL lipids when compared to comparable levels of cardiorespiratory or muscular fitness non-smoking young men. Metabolic syndrome was associated with increased levels of ox-LDL and high levels of ox-LDL combined with poor cardiorespiratory and abdominal muscle fitness seems to predict metabolic syndrome in young men. Also, participants with poor cardiorespiratory fitness and low levels of testosterone had higher levels of ox-LDL when compared to participants with high cardiorespiratory fitness / low testosterone as well as those with poor cardiorespiratory fitness / high testosterone. Conclusions: Good cardiorespiratory and muscular fitness protects young men from increased levels of ox-LDL lipids. This association was discovered in young men who were categorized as being overweight, smokers, metabolic syndrome or with low levels of testosterone. Being fit seems to prevent higher levels of ox-LDL, even in young healthy
Resumo:
Familial hypercholesterolemia (FH) is a common autosomal disorder that affects about one in 500 individuals in most Western populations and is caused by a defect in the low-density-lipoprotein receptor (LDLr) gene. In this report we determined the molecular basis of FH in 59 patients from 31 unrelated Brazilian families. All patients were screened for the Lebanese mutation, gross abnormalities of the LDLr gene, and the point mutation in the codon 3500 of the apolipoprotein B-100 gene. None of the 59 patients presented the apoB-3500 mutation, suggesting that familial defective ApoB-100 (FDB) is not a major cause of inherited hypercholesterolemia in Brazil. A novel 4-kb deletion in the LDLr gene, spanning from intron 12 to intron 14, was characterized in one family. Both 5' and 3' breakpoint regions were located within Alu repetitive sequences, which are probably involved in the crossing over that generated this rearrangement. The Lebanese mutation was detected in 9 of the 31 families, always associated with Arab ancestry. Two different LDLr gene haplotypes were demonstrated in association with the Lebanese mutation. Our results suggest the importance of the Lebanese mutation as a cause of FH in Brazil and by analogy the same feature may be expected in other countries with a large Arab population, such as North American and Western European countries.
Resumo:
Acute myelogenous leukemia (AML) blast cells show high-affinity degradation of low-density lipoprotein (LDL), suggesting an increased expression of cellular LDL receptors. LDE is a lipid microemulsion easily synthesized in vitro which is known to mimic the metabolic pathway of LDL. We used LDE as a carrier for daunorubicin and assayed the cytotoxicity of the complex using AML blast cells since RT-PCR analysis showed that AML cells express LDL receptor mRNA. The LDE:daunorubicin complex killed 46.7% of blast cells and 20.2% of normal bone marrow cells (P<0.001; Student t-test). Moreover, this complex destroyed AML blast cells as efficiently as free daunorubicin. Thus, LDE might be a suitable carrier of chemotherapeutic agents targeting these drugs to neoplastic cells and protecting normal tissues.
Resumo:
Estrogen has multiple effects on lipid and lipoprotein metabolism. We investigated the association between the four common single nucleotide polymorphisms in the estrogen receptor 1 (ESR1) gene locus, -1989T>G, +261G>C, IVS1-397T>C and IVS1-351A>G, and lipid and lipoprotein levels in southern Brazilians. The sample consisted in 150 men and 187 premenopausal women. The women were considered premenopausal if they had regular menstrual bleeding within the previous 3 months and were 18-50 years of age. Exclusion criteria were pregnancy, secondary hyperlipidemia due to renal, hepatic or thyroid disease, and diabetes. Smoking status was self-reported; subjects were classified as never smoked and current smokers. DNA was amplified by PCR and was subsequently digested with the appropriate restriction enzymes. Statistical analysis was carried out for men and women separately. In the study population, major allele frequencies were _1989*T (0.83), +261*G (0.96), IVS1-397*T (0.58), and IVS1-351*A (0.65). Multiple linear regression analyses indicated that an interaction between +261G>C polymorphism and smoking was a significant factor affecting high-density lipoprotein cholesterol (HDL-C) levels (P = 0.028) in women. Nonsmoking women with genotype G/C of +261G>C polymorphism had mean HDL-C levels higher than those with G/G genotype (1.40 ± 0.33 vs 1.22 ± 0.26 mmol/L; P = 0.033). No significant associations with lipid and lipoprotein levels in women and men were detected for other polymorphisms. In conclusion, the +261G>C polymorphism might influence lipoprotein and lipid levels in premenopausal women, but these effects seem to be modulated by smoking, whereas in men ESR1 polymorphisms were not associated with high lipoprotein levels.
Resumo:
Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression.
Resumo:
Associations between polymorphisms of the CD36 gene and susceptibility to coronary artery heart disease (CHD) are not clear. We assessed allele frequencies and genotype distributions of CD36 gene polymorphisms in 112 CHD patients and 129 control patients using semi-quantitative polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Additionally, we detected CD36 mRNA expression by real-time quantitative PCR, and we quantified plasma levels of oxidized low-density lipoprotein (ox-LDL) using an enzyme-linked immunosorbent assay (ELISA). There were no significant differences between the two groups (P>0.05) in allele frequencies of rs1761667 or in genotype distribution and allele frequencies of rs3173798. The genotype distribution of rs1761667 significantly differed between CHD patients and controls (P=0.034), with a significantly higher frequency of the AG genotype in the CHD group compared to the control group (P=0.011). The plasma levels of ox-LDL in patients with the AG genotype were remarkably higher than those with the GG and AA genotypes (P=0.010). In a randomized sample taken from patients in the two groups, the CD36 mRNA expression of the CHD patients was higher than that of the controls. In CHD patients, the CD36 mRNA expression in AG genotype patients was remarkably higher than in those with an AA genotype (P=0.005). After adjusted logistic regression analysis, the AG genotype of rs1761667 was associated with an increased risk of CHD (OR=2.337, 95% CI=1.336-4.087, P=0.003). In conclusion, the rs1761667 polymorphism may be closely associated with developing CHD in the Chongqing Han population of China, and an AG genotype may be a genetic susceptibility factor for CHD.
Resumo:
The production of oxygen free radicals in type 2 diabetes mellitus contributes to the development of complications, especially the cardiovascular-related ones. Peroxiredoxins (PRDXs) are antioxidant enzymes that combat oxidative stress. The aim of this study was to investigate the associations between the levels of PRDX isoforms (1, 2, 4, and 6) and cardiovascular risk factors in type 2 diabetes mellitus. Fifty-three patients with type 2 diabetes mellitus (28F/25M) and 25 healthy control subjects (7F/18M) were enrolled. We measured the plasma levels of each PRDX isoform and analyzed their correlations with cardiovascular risk factors. The plasma PRDX1, -2, -4, and -6 levels were higher in the diabetic patients than in the healthy control subjects. PRDX2 and -6 levels were negatively correlated with diastolic blood pressure, fasting blood sugar, and hemoglobin A1c. In contrast, PRDX1 levels were positively correlated with low-density lipoprotein and C-reactive protein levels. PRDX4 levels were negatively correlated with triglycerides. In conclusion, PRDX1, -2, -4, and -6 showed differential correlations with a variety of traditional cardiovascular risk factors. These results should encourage further research into the crosstalk between PRDX isoforms and cardiovascular risk factors.
Resumo:
INTRODUCTION: Chronic kidney disease patients present a very high cardiovascular mortality. Nevertheless, a comparative description of lesion characteristics, using intravascular ultrasound in dialysis patients, has not yet been reported. The objective of the present study was to analyze the plaque morphology through intravascular ultrasound in comparison to their counterparts with normal renal function. METHODS: Patients were screened for coronary artery disease, and the coronary angiography was performed when indicated. Plaque morphology was evaluated by ultrasound, and findings were compared to a group of patients with coronary artery disease, who presented normal renal function, it carefully matched for all Framingham risk factors and lesion location at the coronary artery tree. RESULTS: One hundred and thirty-nine patients from a single center of hemodialysis were screened for the study. Patients with coronary lesions confirmed at the angiography presented lower hemoglobin (10.8 ± 1.5 versus 12.0 ± 19; p < 0.046) levels and higher levels of low-density lipoprotein (110.6 ± 25.8 versus 75.5 ± 43.1; p < 0.004), when compared to the ones without coronary artery disease. The ultrasound revealed greater proximal reference diameter (4.1 ± 0.6 versus 3.7 ± 0.5; p < 0.007), smaller crossed sectional area (4.2±1.6 versus 5.2 ± 1.8; p < 0.02), and the calcification was located in a deeper arterial layer (69 versus 9%; p < 0.004) in patients with chronic kidney disease when compared to the Control Group. CONCLUSION: Lesions of the patients with chronic kidney disease presented a larger proximal diameter and intense calcification in the deeper layer of the vessel, which suggest a greater positive remodeling effect in response to a more aggressive atherosclerotic process in the medial section of the artery.
Resumo:
Hepatocellular Carcinoma (HCC) is a major healthcare problem, representing the third most common cause of cancer-related mortality worldwide. Chronic infections with Hepatitis B virus (HBV) and/or Hepatitis C virus (HCV) are the major risk factors for the development of HCC. The incidence of HBV -associated HCC is in decline as a result of an effective HBV vaccine; however, since an equally effective HCV vaccine has not yet been developed, there are 130 million HCV infected patients worldwide who are at a high-risk for developing HCC. Because reliable parameters and/or tools for the early detection of HCC among high-risk individuals are severely lacking, HCC patients are always diagnosed at a late stage where surgical solutions or effective treatment are not possible. Using urine as a non-invasive sample source, two different approaches (proteomic-based and genomic-based approaches) were pursued with the common goal of discovering potential biomarker candidates for the early detection of HCC among high-risk chronic HCV infected patients. Urine was collected from 106 HCV infected Egyptian patients, 32 of whom had already developed HCC and 74 patients who were diagnosed as HCC-free at the time of initial sample collection. In addition to these patients, urine samples were also collected from 12 healthy control individuals. Total urinary proteins, Trans-renal nucleic acid (Tr-NA) and microRNA (miRNA) were isolated from urine using novel methodologies and silicon carbide-loaded spin columns. In the first, "proteomic-based", approach, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to identify potential candidates from pooled urine samples. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR (qRT-PCR). This approach revealed that significant over-expression of three proteins: DJ-1, Chromatin Assembly Factor-1 (CAF-1) and 11 Moemen Abdalla HCC Biomarkers Heat Shock Protein 60 (HSP60), were characteristic events among HCC-post HCV infected patients. As a single-based HCC biomarker, CAF-1 over-expression identified HCC among HCV infected patients with a specificity of 90%, sensitivity of 66% and with an overall diagnostic accuracy of 78%. Moreover, the CAF-lIHSP60 tandem identified HCC among HCV infected patients with a specificity of 92%, sensitivity of 61 % and with an overall diagnostic accuracy of 77%. In the second genomic-based approach, two different approaches were processed. The first approach was the miRNA-based approach. The expression levels of miRNAs isolated from urine were studied using the Illumina MicroRNA Expression Profiling Assay. This was followed by qRT-PCR-based validation of deregulated expression of identified miRNA candidates among all the patients. This approach shed the light on the deregulated expression of a number of miRNAs, which may have a role in either the development of HCC among HCV infected patients (i.e. miR-640, miR-765, miR-200a, miR-521 and miR-520) or may allow for a better understanding of the viral-host interaction (miR-152, miR-486, miR-219, miR452, miR-425, miR-154 and miR-31). Moreover, the deregulated expression of both miR-618 and miR-650 appeared to be a common event among HCC-post HCV infected patients. The results of the search for putative targets of these two miRNA suggested that miR-618 may be a potent oncogene, as it targets the tumor-suppressor gene Low density lipoprotein-related protein 12 (LPR12), while miR-650 may be a potent tumor-suppressor gene, as it is supposed to downregulate the TNF receptor-associated factor-4 (TRAF4) oncogene. The specificity of miR-618 and miR-650 deregulated expression patterns for the early detection of HCC among HCV infected patients was 68% and 58%, respectively, whereas the sensitivity was 64% and 72%, respectively. When the deregulated expression of both miRNAs was combined as a tandem biomarker, the specificity and the sensitivity were 75% and 58% respectively. 111 Moemen Abdalla HCC Biomarkers In the second, "Trans-renal nucleic acid-based", approach, the urinary apoptotic nucleic acid (uaNA) levels of 70ng/mL or more were found to be a good predictor of HCC among chronic HCV infected patients. The specificity and the sensitivity of this diagnostic approach were 76% and 86%, respectively, with an overall diagnostic value of 81 %. The uaNA levels positively correlated to HCC disease progression as monitored by epigenetic changes of a panel of eight tumor-suppressor genes (TSGs) using methylation-sensitive PCR. Moreover, the pairing of high uaNA levels (:::: 70 ng/mL) and CAF-1 over-expreSSIOn produced a highly specific (l 00%) multiple-based HCC biomarker with an acceptable sensitivity of 64%, and with a diagnostic accuracy of 82%. In comparison to the previous pairing, the uaNA levels (:::: 70 ng/mL) in tandem with HSP60 over-expression was less specific (89%) but highly sensitive (72%), resulting in a diagnostic accuracy of 64%. The specificities of miR-650 deregulated expression in combination with either high uaNA content or HSP 60 over-expression were 82% and 79%, respectively, whereas, the sensitivities of these combinations were 64% and 58%, respectively. The potential biomarkers identified in this study compare favorably with the diagnostic accuracy of the a-fetoprotein levels test, which has a specificity of 75%, sensitivity of 68% and an overall diagnostic accuracy of 70%. Here we present an intriguing study which shows the significance of using urine as a noninvasive sample source for the identification of promising HCC biomarkers. We have also introduced new techniques for the isolation of different urinary macromolecules, especially miRNA, from urine. Furthermore, we strongly recommend the potential biomarkers indentified in this study as focal points of any future research on HCC diagnosis. A larger testing pool will determine if their use is practical for mass population screening. This explorative study identified potential targets that merit further investigation for the development of diagnostically accurate biomarkers isolated from 1-2 mL urine samples that were acquired in a non-invasive manner.
Resumo:
The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.