922 resultados para Location-aware process modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some organizations end up reimplementing the same class of business process over and over: an "administrative process", which consists of managing a form through several states and involving various roles in the organization. This results in wasted time that could be dedicated to better understanding the process or dealing with the fine details that are specific to the process. Existing virtual office solutions require specific training and infrastructure andmay result in vendor lock-in. In this paper, we propose using a high-level domain-specific language (AdminDSL) to describe the administrative process and a separate code generator targeting a standard web framework. We have implemented the approach using Xtext, EGL and the Django web framework, and we illustrate it through two case studies: a synthetic examination process which illustrates the architecture of the generated code, and a real-world workplace survey process that identified several future avenues for improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional finite element model of cold pilgering of stainless steel tubes is developed in this paper. The objective is to use the model to increase the understanding of forces and deformations in the process. The focus is on the influence of vertical displacements of the roll stand and axial displacements of the mandrel and tube. Therefore, the rigid tools and the tube are supported with elastic springs. Additionally, the influences of friction coefficients in the tube/mandrel and tube/roll interfaces are examined. A sensitivity study is performed to investigate the influences of these parameters on the strain path and the roll separation force. The results show the importance of accounting for the displacements of the tube and rigid tools on the roll separation force and the accumulative plastic strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there are two federal programs related to excess federal property in which the South Carolina Forestry Commission participates. There is a need to streamline the process for applying for federal excess property as well as tracking its location once it has been received and assigned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure of 6XXX aluminum alloys deeply affects mechanical, crash, corrosion and aesthetic properties of extruded profiles. Unfortunately, grain structure evolution during manufacturing processes is a complex phenomenon because several process and material parameters such as alloy chemical composition, temperature, extrusion speed, tools geometries, quenching and thermal treatment parameters affect the grain evolution during the manufacturing process. The aim of the present PhD thesis was the analysis of the recrystallization kinetics during the hot extrusion of 6XXX aluminum alloys and the development of reliable recrystallization models to be used in FEM codes for the microstructure prediction at a die design stage. Experimental activities have been carried out in order to acquire data for the recrystallization models development, validation and also to investigate the effect of process parameters and die design on the microstructure of the final component. The experimental campaign reported in this thesis involved the extrusion of AA6063, AA6060 and AA6082 profiles with different process parameters in order to provide a reliable amount of data for the models validation. A particular focus was made to investigate the PCG defect evolution during the extrusion of medium-strength alloys such as AA6082. Several die designs and process conditions were analysed in order to understand the influence of each of them on the recrystallization behaviour of the investigated alloy. From the numerical point of view, innovative models for the microstructure prediction were developed and validated over the extrusion of industrial-scale profiles with complex geometries, showing a good matching in terms of the grain size and surface recrystallization prediction. The achieved results suggest the reliability of the developed models and their application in the industrial field for process and material properties optimization at a die-design stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the turn of the century, fisheries have maintained a steady growth rate, while aquaculture has experienced a more rapid expansion. Aquaculture can offer EU consumers more diverse, healthy, and sustainable food options, some of which are more popular elsewhere. To develop the sector, the EU is investing heavily. The EU supports innovative projects that promote the sustainable development of seafood sectors and food security. Priority 3 promotes sector development through innovation dissemination. This doctoral dissertation examined innovation transfer in the Italian aquaculture sector, specifically the adoption of innovative tools, using a theoretical model to better understand the complexity of these processes. The work focused on innovation adoption, emphasising that it is the end of a well-defined process. The Awareness Knowledge Adoption Implementation Effectiveness (AKAIE) model was created to better analyse post-adoption phases and evaluate technology adoption implementation and impact. To identify AKAIE drivers and barriers, aquaculture actors were consulted. "Perceived complexity"—barriers to adoption that are strongly influenced by contextual factors—has been used to examine their perspectives (i.e. socio-economic, institutional, cultural ones). The new model will contextualise the sequence based on technologies, entrepreneur traits, corporate and institutional contexts, and complexity perception, the sequence's central node. Technology adoption can also be studied by examining complexity perceptions along the AKAIE sequence. This study proposes a new model to evaluate the diffusion of a given technology, offering the policy maker the possibility to be able to act promptly across the process. The development of responsible policies for evaluating the effectiveness of innovation is more necessary than ever, especially to orient strategies and interventions in the face of major scenarios of change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafast pump-probe spectroscopy is a conceptually simple and versatile tool for resolving photoinduced dynamics in molecular systems. Due to the fast development of new experimental setups, such as synchrotron light sources and X-ray free electron lasers (XFEL), new spectral windows are becoming accessible. On the one hand, these sources have enabled scientist to access faster and faster time scales and to reach unprecedent insights into dynamical properties of matter. On the other hand, the complementarity of well-developed and novel techniques allows to study the same physical process from different points of views, integrating the advantages and overcoming the limitations of each approach. In this context, it is highly desirable to reach a clear understanding of which type of spectroscopy is more suited to capture a certain facade of a given photo-induced process, that is, to establish a correlation between the process to be unraveled and the technique to be used. In this thesis, I will show how computational spectroscopy can be a tool to establish such a correlation. I will study a specific process, which is the ultrafast energy transfer in the nicotinamide adenine dinucleotide dimer (NADH). This process will be observed in different spectral windows (from UV-VIS to X-rays), accessing the ability of different spectroscopic techniques to unravel the system evolution by means of state-of-the-art theoretical models and methodologies. The comparison of different spectroscopic simulations will demonstrate their complementarity, eventually allowing to identify the type of spectroscopy that is best suited to resolve the ultrafast energy transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is focused on studying the kinetics of esterification of levulinic acid in an isothermal batch reactor using ethanol as a reactant and as a protic polar solvent at the same time and in the presence of an acid catalyst (sulfuric acid). The choice of solvent is important as it affects the kinetics and thermodynamics of the reaction system moreover, the knowledge of the reaction kinetics plays an important role in the design of the process. This work is divided into two stages; The first stage is the experimental part in which the experimental matrix was developed by changing the process variables one at a time (temperature, molar ratio between reactants, and catalyst concentration) in order to study their influence on the kinetics; the second stage is using the obtained data from the experiments to build the modeling part in order to estimate the thermodynamics parameters.