999 resultados para Lineations, rotation structures
Resumo:
We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat
Resumo:
The aim of this study was to analyze the thickness of the intima-media complex (IMC) using a noninvasive method. The carotid and femoral common arteries were evaluated by noninvasive B-mode ultrasound in 63 normotensive and in 52 hypertensive subjects and the thickness of the IMC was tested for correlation with blood pressure, cardiac structures and several clinical and biological parameters. The IMC was thicker in hypertensive than in normotensive subjects (0.67 ± 0.13 and 0.62 ± 0.16 vs 0.54 ± 0.09 and 0.52 ± 0.11 mm, respectively, P<0.0001). In normotensive patients, the simple linear regression showed significant correlations between IMC and age, body mass index and 24-h systolic blood pressure for both the carotid and femoral arteries. In hypertensives the carotid IMC was correlated with age and 24-h systolic blood pressure while femoral IMC was correlated only with 24-h diastolic blood pressure. Forward stepwise regression showed that age, body mass index and 24-h systolic blood pressure influenced the carotid IMC relationship (r2 = 0.39) in normotensives. On the other hand, the femoral IMC relationship was influenced by 24-h systolic blood pressure and age (r2 = 0.40). In hypertensives, age and 24-h systolic blood pressure were the most important determinants of carotid IMC (r2 = 0.37), while femoral IMC was influenced only by 24-h diastolic blood pressure (r2 = 0.10). There was an association between carotid IMC and echocardiographic findings in normotensives, while in hypertensives only the left posterior wall and interventricular septum were associated with femoral IMC. We conclude that age and blood pressure influence the intima-media thickness, while echocardiographic changes are associated with the IMC.
Resumo:
The presence of chitin in midgut structures of Callosobruchus maculatus larvae was shown by chemical and immunocytochemical methods. Detection by Western blotting of cowpea (Vigna unguiculata) seed vicilins (7S storage proteins) bound to these structures suggested that C. maculatus-susceptible vicilins presented less staining when compared to C. maculatus-resistant vicilins. Storage proteins present in the microvilli in the larval midgut of the bruchid were recognized by immunolabeling of vicilins in the appropriate sections with immunogold conjugates. These labeling sites coincided with the sites labeled by an anti-chitin antibody. These results, taken together with those previously published showing that the lower rates of hydrolysis of variant vicilins from C. maculatus-resistant seeds by the insect's midgut proteinases and those showing that vicilins bind to chitin matrices, may explain the detrimental effects of variant vicilins on the development of C. maculatus larvae.
Resumo:
The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.
Resumo:
Allergy is characterized by T helper (Th) 2-type immune response after encounter with an allergen leading to subsequent immunoglobulin (Ig) E-mediated hypersensitivity reaction and further allergic inflammation. Allergen-specific immunotherapy (SIT) balances the Th2-biased immunity towards Th1 and T regulatory responses. Adjuvants are used in allergen preparations to intensify and modify SIT. β-(1,2)-oligomannoside constituents present in Candida albicans (C. albicans) cell wall possess Th1-type immunostimulatory properties. The aim of this thesis was to develop a β-(1,2)-linked carbohydrate compound with known structure and anti-allergic properties to be applied as an adjuvant in SIT. First the immunostimulatory properties of various fungal extracts were studied. C. albicans appeared to be the most promising Th1-inducing extract, which led to the synthesis of various mono- or divalent oligomannosides designed on the basis of C. albicans. These carbohydrates did not induce strong cytokine production in human peripheral blood mononuclear cell (PBMC) cultures. In contrast to earlier reports using native oligosaccharides from C. albicans, synthetic -(1,2)-linked mannotetraose did not induce any tumor necrosis factor production in murine macrophages. Next, similarities with synthesized divalent mannosides and the antigenic epitopes of β-(1,2)-linked C. albicans mannan were investigated. Two divalent compounds inhibited specific IgG antibodies binding to below 3 kDa hydrolyzed mannan down to the level of 30–50% showing similar antigenicity to C. albicans. Immunomodulatory properties of synthesized carbohydrate assemblies ranging from mono- to pentavalent were evaluated. A trivalent acetylated dimannose (TADM) induced interleukin-10 (IL-10) and interferon-γ responses. TADM also suppressed birch pollen induced IL-4 and IL-5 responses in allergen (Bet v) stimulated PBMCs of birch pollen allergic subjects. This suppression was stronger with TADM than with other used adjuvants, immunostimulatory oligonucleotides and monophosphoryl lipid A. In a murine model of asthma, the allergen induced inflammatory responses could also be suppressed by TADM on cytokine and antibody levels.
Resumo:
This thesis is devoted to the study of the hyperfine properties in iron-based superconductors and the synthesis of these compounds and related phases. During this work polycrystalline chalcogenide samples with stoichiometry 1:1 (FeTe1-χSχ, FeSe1-x) and pnictide samples with stoichiometry 1:2:2 (BaFe2(As1-χPχ)2, EuFe2(As1-x Px)2) were synthesized by solid-state reaction methods in vacuum and in a protecting Ar atmosphere. In several cases post-annealing in oxygen atmosphere was employed. The purity and superconducting properties of the obtained samples were checked with X-ray diffraction, SQUID and resistivity measurements. For studies of the magnetic properties of the investigated samples Mössbauer spectroscopy was used. Using low-temperature measurements around Tc and various values of the source velocity the hyperfine interactions were obtained and the magnetic and structural properties in the normal and superconducting states could be studied. Mössbauer measurements together with XRD characterization were also used for the detection of impurity phases. DFT calculations were used for the theoretical study of Mössbauer parameters for pnictide-based ᴻsamples BaFe2(As1-xPx)2 and EuFe2(As1-xPx)2.
Resumo:
Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.
Resumo:
The bedrock of old crystalline cratons is characteristically saturated with brittle structures formed during successive superimposed episodes of deformation and under varying stress regimes. As a result, the crust effectively deforms through the reactivation of pre-existing structures rather than by through the activation, or generation, of new ones, and is said to be in a state of 'structural maturity'. By combining data from Olkiluoto Island, southwestern Finland, which has been investigated as the potential site of a deep geological repository for high-level nuclear waste, with observations from southern Sweden, it can be concluded that the southern part of the Svecofennian shield had already attained structural maturity during the Mesoproterozoic era. This indicates that the phase of activation of the crust, i.e. the time interval during which new fractures were generated, was brief in comparison to the subsequent reactivation phase. Structural maturity of the bedrock was also attained relatively rapidly in Namaqualand, western South Africa, after the formation of first brittle structures during Neoproterozoic time. Subsequent brittle deformation in Namaqualand was controlled by the reactivation of pre-existing strike-slip faults.In such settings, seismic events are likely to occur through reactivation of pre-existing zones that are favourably oriented with respect to prevailing stresses. In Namaqualand, this is shown for present day seismicity by slip tendency analysis, and at Olkiluoto, for a Neoproterozoic earthquake reactivating a Mesoproterozoic fault. By combining detailed field observations with the results of paleostress inversions and relative and absolute time constraints, seven distinctm superimposed paleostress regimes have been recognized in the Olkiluoto region. From oldest to youngest these are: (1) NW-SE to NNW-SSE transpression, which prevailed soon after 1.75 Ga, when the crust had sufficiently cooled down to allow brittle deformation to occur. During this phase conjugate NNW-SSE and NE-SW striking strike-slip faults were active simultaneous with reactivation of SE-dipping low-angle shear zones and foliation planes. This was followed by (2) N-S to NE-SW transpression, which caused partial reactivation of structures formed in the first event; (3) NW-SE extension during the Gothian orogeny and at the time of rapakivi magmatism and intrusion of diabase dikes; (4) NE-SW transtension that occurred between 1.60 and 1.30 Ga and which also formed the NW-SE-trending Satakunta graben located some 20 km north of Olkiluoto. Greisen-type veins also formed during this phase. (5) NE-SW compression that postdates both the formation of the 1.56 Ga rapakivi granites and 1.27 Ga olivine diabases of the region; (6) E-W transpression during the early stages of the Mesoproterozoic Sveconorwegian orogeny and which also predated (7) almost coaxial E-W extension attributed to the collapse of the Sveconorwegian orogeny. The kinematic analysis of fracture systems in crystalline bedrock also provides a robust framework for evaluating fluid-rock interaction in the brittle regime; this is essential in assessment of bedrock integrity for numerous geo-engineering applications, including groundwater management, transient or permanent CO2 storage and site investigations for permanent waste disposal. Investigations at Olkiluoto revealed that fluid flow along fractures is coupled with low normal tractions due to in-situ stresses and thus deviates from the generally accepted critically stressed fracture concept, where fluid flow is concentrated on fractures on the verge of failure. The difference is linked to the shallow conditions of Olkiluoto - due to the low differential stresses inherent at shallow depths, fracture activation and fluid flow is controlled by dilation due to low normal tractions. At deeper settings, however, fluid flow is controlled by fracture criticality caused by large differential stress, which drives shear deformation instead of dilation.
Resumo:
The objective of the present study was to describe, for the first time in Brazil, the use by a non-ophthalmologist of a community-based marginal rotation procedure by a posterior approach in the indigenous population from the Upper Rio Negro basin. Seventy-three upper eyelids of 46 Indians (11 males and 35 females) with cicatricial upper eyelid entropion and trichiasis were operated in the Indian communities using a marginal rotational procedure by a posterior approach by a non-ophthalmologist physician who had general surgery experience but only an extremely short period (one week) of ophthalmic training. Subjects were reevaluated 6 months after surgery. Results were classified according to the presence and location of residual trichiasis and symptoms were assessed according to a three-level subjective scale (better, worse or no change). Fifty-six eyelids (76.7%) were free from trichiasis, whereas residual trichiasis was observed in 17 eyelids (23.3%) of 10 subjects. In these cases, trichiasis was either lateral or medial to the central portion of the lid. Of these 10 patients, only 4 reported that the surgery did not improve the irritative symptoms. We conclude that marginal rotation by a posterior approach is an effective and simple procedure with few complications, even when performed by non-specialists. Due to its simplicity the posterior approach is an excellent option for community-based upper eyelid entropion surgery.
Resumo:
Cajal bodies (CB) are ubiquitous nuclear structures involved in the biogenesis of small nuclear ribonucleoproteins and show narrow association with the nucleolus. To identify possible relationships between CB and the nucleolus, the localization of coilin, a marker of CB, and of a set of nucleolar proteins was investigated in cultured PtK2 cells undergoing micronucleation. Nocodazol-induced micronucleated cells were examined by double indirect immunofluorescence with antibodies against coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM/Scl, and To/Th. Cells were imaged on a BioRad 1024-UV confocal system attached to a Zeiss Axiovert 100 microscope. Since PtK2 cells possess only one nucleolus organizer region, micronucleated cells presented only one or two micronuclei containing nucleolus. By confocal microscopy we showed that in most micronuclei lacking a typical nucleolus a variable number of round structures were stained by antibodies against fibrillarin, NOR-90/hUBF protein, and coilin. These bodies were regarded as CB-like structures and were not stained by anti-PM/Scl and anti-To/Th antibodies. Anti-RNA polymerase I antibodies also reacted with CB-like structures in some micronuclei lacking nucleolus. The demonstration that a set of proteins involved in RNA/RNP biogenesis, namely coilin, fibrillarin, NOR-90/hUBF, and RNA polymerase I gather in CB-like structures present in nucleoli-devoid micronuclei may contribute to shed some light into the understanding of CB function.
Resumo:
This thesis studies metamaterial-inspired mirrors which provide the most general control over the amplitude and phase of the reflected wavefront. The goal is to explore practical possibilities in designing fully reflective electromagnetic structures with full control over reflection phase. The first part of the thesis describes a planar focusing metamirror with the focal distance less than the operating wavelength. Its practical applicability from the viewpoint of aberrations when the incident angle deviates from the normal one is verified numerically and experimentally. The results indicate that the proposed focusing metamirror can be efficiently employed in many different applications due to its advantages over other conventional mirrors. In the second part of the thesis a new theoretical concept of reflecting metasurface operation is introduced based on Huygens’ principle. This concept in contrast to known approaches takes into account all the requirements of perfect metamirror operation. The theory shows a route to improve the previously proposed metamirrors through tilting the individual inclusions of the structure at a chosen angle from normal. It is numerically tested and the results demonstrate improvements over the previous design.
Resumo:
It has been shown that mental rotation of objects and human body parts is processed differently in the human brain. But what about body parts belonging to other primates? Does our brain process this information like any other object or does it instead maximize the structural similarities with our homologous body parts? We tried to answer this question by measuring the manual reaction time (MRT) of human participants discriminating the handedness of drawings representing the hands of four anthropoid primates (orangutan, chimpanzee, gorilla, and human). Twenty-four right-handed volunteers (13 males and 11 females) were instructed to judge the handedness of a hand drawing in palm view by pressing a left/right key. The orientation of hand drawings varied from 0º (fingers upwards) to 90º lateral (fingers pointing away from the midline), 180º (fingers downwards) and 90º medial (finger towards the midline). The results showed an effect of rotation angle (F(3, 69) = 19.57, P < 0.001), but not of hand identity, on MRTs. Moreover, for all hand drawings, a medial rotation elicited shorter MRTs than a lateral rotation (960 and 1169 ms, respectively, P < 0.05). This result has been previously observed for drawings of the human hand and related to biomechanical constraints of movement performance. Our findings indicate that anthropoid hands are essentially equivalent stimuli for handedness recognition. Since the task involves mentally simulating the posture and rotation of the hands, we wondered if "mirror neurons" could be involved in establishing the motor equivalence between the stimuli and the participants' own hands.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
The purpose of this thesis was to investigate environmental permits of landfills with respect to the appropriateness of risk assessments focusing on contaminant migration, structures capable to protect the environment, waste and leachate management and existing environmental impacts of landfills. According to the requirements, a risk assessment is always required to demonstrate compliance with environmental protection requirements if the environmental permit decision deviates from the set requirements. However, there is a reason to doubt that all relevant risk factors are identified in current risk assessment practices in order to protect people end environment. In this dissertation, risk factors were recognized in 12 randomly selected landfills. Based on this analysis, a structural risk assessment method was created. The method was verified with two case examples. Several development needs were found in the risk assessments of the environmental permit decisions. The risk analysis equations used in the decisions did not adequately take into account all the determining factors like waste prospects, total risk quantification or human delineated factors. Instead of focusing on crucial factors, the landfill environmental protection capability is simply expressed via technical factors like hydraulic conductivity. In this thesis, it could be shown, that using adequate risk assessment approaches the most essential environmental impacts can be taken into account by consideration of contaminant transport mechanisms, leachate effects, and artificial landfill structures. The developed structural risk analysing (SRA) method shows, that landfills structures could be designed in a more cost-efficient way taking advantage of recycled or by-products. Additionally, the research results demonstrate that the environmental protection requirements of landfills should be updated to correspond to the capability to protect the environment instead of the current simplified requirements related to advective transport only.
Resumo:
Due to changing cropping practices in perennial grass seed crops in western Oregon, USA, alternative rotation systems are being considered to reduce weed infestations. Information is generally lacking regarding the effects of alternative agronomic operations and herbicide inputs on soil weed seed bank composition during this transition. Six crop rotation systems were imposed in 1992 on a field that had historically produced monoculture perennial ryegrass (Lolium perenne L.) seeds. Each system plot was 20 x 30 m, arranged in a randomized complete block design, replicated four times. Twenty to thirty soil cores were sampled in June 1997 from each plot. The weed species composition of the cores was determined by successive greenhouse grow-out assays. In addition to seed density, heterogeneity indices for species evenness, richness, and diversity were determined. The most abundant species were Juncus bufonius L. and Poa annua L. Changes in seed bank composition were due to the different herbicides used for the rotation crop components. Compared to the other rotation systems, no-tillage, spring-planted wheat (Triticum aestivum L.) and oat (Avena sativa L.) reduced overall weed seed density and richness, but did not affect weed species evenness or diversity. When meadowfoam (Limnanthes alba Hartweg ex Benth.) succeeded wheat in rotation, weed species richness was unaffected, but evenness and diversity were reduced, compared to the other rotation systems. For meadowfoam in sequence after white clover (Trifolium repens L.), crop establishment method (no-tillage and conventional tillage) had no effect on weed seed species density, evenness, or diversity.