994 resultados para Line geometry
Resumo:
The phenomenon of tip leakage has been studied in two linear cascades of turbine blades. The investigation includes an examination of the performance of the cascades with a variety of tip geometries. The effects of using plain tips, suction side squealers, and pressure side squealers are reported. Traverses of the exit flow field were made in order to determine the overall performance. A method of calculating the tip discharge coefficients for squealer geometries is put forward. In linking the tip discharge coefficient and cascade losses, a procedure for predicting the relative performance of tip geometries is developed. The model is used to examine the results obtained using the different tip treatments and to highlight the important aspects of the loss generation process.
Resumo:
The effect of varying both the aspect ratio and the coefficient of friction of contacts with elliptical geometry on their elastic shakedown performance has been examined theoretically for surfaces with two types of subsurface hardness or strength profiles. In stepwise hardening the hard layer is of uniform strength while in linear hardening its strength reduces from a maximum at the surface to that of the core at the base of the hardened layer. The shakedown load is expressed as the ratio of the maximum Hertzian pressure to the strength of the core material. As the depth of hardening, expressed as a multiple of the elliptical semi-axis, is increased so the potential shakedown load increases from a level that is appropriate to a uniform half-space of unhardened material to a value reflecting the hardness of the surface and near-surface material. In a step-hardened material, the shakedown limit for a surface 'pummelled' by the passage of a sequence of such loads reaches a cut-off or plateau value, which cannot be exceeded by further increases in hardening depth irrespective of the value of the friction coefficient. For a linear-hardened material the corresponding plateau is approached asymptotically. The work confirms earlier results on the upper bounds on shakedown of both point and line contacts and provides numerical values of shakedown loads for intermediate geometries. In general, the case depth required to achieve a given shakedown limit reduces in moving from a transversely moving nominal line load to an axisymmetric point load.
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.
Resumo:
Under a joint agreement the Government of Sri Lanka and the Nichiro Fishing Company of Japan have undertaken an experimental pole and line fishery around Sri Lanka with a view to determining the feasibility of establishing a joint commercial venture. 3 Japanese vessels conducted trials during the period March 1973-October 1974. Details of the vessels and cruises are given. A variety of fish were tried as bait, and the selection of appropriate bait is discussed. Catches and catch and effort statistics are presented, with tables showing distribution of the tuna. The results of the trials were below expectations, and are in part attributed to bait availability, and unfavorable weather conditions. Seasonal variation of the type of fishery is suggested in order to take account of this, and it is concluded that a fishery based on 45/50 ft combined pole and line and drift net fishing vessels might prove feasible.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.
Resumo:
The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.
Resumo:
Large eddy simulation (LES) type studies are made of a realistic geometry coaxial nozzle with a pylon. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving Numerical LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier Stokes) model is used giving a hybrid NLES-RANS approach.The pylon is shown to influence the flow development, having a significant impact on peak turbulence levels and spreading rates. The results show that real geometry effects are influential and should be taken into account when moving towards real engine simulations. If their effects are ignored then, based on the studies here, key turbulence parameters will have significant error.
Resumo:
Observations on the use of stick held drag nets for the removal of shore line fish, which adversely affect the growth of commercially important species in reservoirs, are presented.