911 resultados para Limits to growth
Resumo:
Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.
Resumo:
Transgenic tobacco plants expressing a phenylalanine ammonia-lyase cDNA (ShPAL), isolated from Stylosanthes humilis, under the control of the 35S promoter of the cauliflower mosaic virus were produced to test the effect of high level PAL expression on disease resistance. The transgenic plants showed up to eightfold PAL activity and were slowed in growth and flowering relative to non-transgenic controls which have segregated out the transgene. The expression of the ShPAL transgene and elevated PAL levels were correlated and stably inherited. In T-1 and T-2 tobacco plants with increased PAL activity, lesion expansion was significantly reduced by up to 55% on stems inoculated with the Oomycete pathogen Phytophthora parasitica pv. nicotianae, Lesion area was significantly reduced by up to 50% on leaves inoculated with the fungal pathogen Cercospora nicotianae. This study provides further evidence that PAL has a role in plant defence. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (Ptdlns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P-3) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99,6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P-3 in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2) but not to PtdIns(3,4,5)P-3. To address the significance of PtdIns(3,4,5)P-3 binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P-3 levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P-2 being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we somal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.
Resumo:
The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.45 mg dry wt cm(-3), occurred at a depth of 0.075 cm. For aerial biomass the maximum density of 39.54 mg dry wt(-3) occurred at the substrate surface. For both aerial and penetrative biomass, there were two distinct regions in which the biomass concentration decayed exponentially with distance from the surface. For aerial biomass, the first exponential decay region was up to 0.1 cm height. The second region above the height of 0.1 cm corresponded to that in which sporangiophores dominated. This work lays the foundation for deeper studies into what controls the growth of fungal hyphae above and below the surfaces of solid substrates. (C) Wiley Periodicals, Inc.
Resumo:
Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.
Resumo:
There is a growing interest in optimizing the positive effects of the association between Azospirillum bacteria and corn crop in order to reduce the use of nitrogen fertilizers. This study aimed to evaluate the inoculation efficiency of an A. brasilense-based commercial product in association with different rates of nitrogen fertilization in two corn genotypes. The experiment was arranged in a 2 x 2 x 5 factorial randomized block design, with four replications. The treatments consisted of two corn hybrids (30F53 and CD386); with and without inoculation with a commercial product based on A. brasilense and five nitrogen rates (0, 40, 80, 120 and 160 kg ha-1). The variables plant height, basal stem diameter, leaf area, shoot dry matter, leaf nitrogen content, length and diameter of the cob, weight of 100 grains and grain yield were evaluated. Inoculation with A. brasilense provided increases of 11 and 12% in leaf area and shoot dry matter, respectively. There were differences in the response of the corn hybrids for most variables and the increase in nitrogen supply provided increments in the growth and yield of corn.