1000 resultados para Light-curing units
Resumo:
Purpose: The retinal balance between pro- and anti-angiogenic factors is critical for angiogenesis control, but is also involved in cell survival. We previously reported upregulation of VEGF and photoreceptor (PR) cell death in the Light-damage (LD) model. Preliminary results showed that anti-VEGF can rescue PR from cell death. Thus, we investigated the role of VEGF on the retina and we herein described the effect of anti-VEGF antibody delivered by lentiviral gene transfer in this model.Methods: To characterize the action of VEGF during the LD, we exposed Balb/c mice subretinally injected with LV-anti-VEGF, or not, to 5'000 lux for 1h. We next evaluated the retinal function, PR survival and protein expression (VEGF, VEGFR1/2, Src, PEDF, p38MAPK, Akt, Peripherin, SWL-opsin) after LD. We analyzed Blood retinal barrier (BRB) integrity on flat-mounted RPE and cryosections stained with β-catenin, ZO-1, N-cadherin and albumin.Results: Results indicate that the VEGF pathway is modulated after LD. LD leads to extravascular albumin leakage and BRB breakdown: β-catenin, ZO-1 and N-cadherin translocate to the cytoplasm of RPE cells showing loss of cell cohesion. This phenomenon is in adequacy with the VEGF time-course expression. Assessment of the retinal function reveals that PR rescue correlates with the level of LV-anti-VEGF expression. Rhodopsin content was higher in the LV-anti-VEGF group than in controls and measures of the ONL thickness indicate that LV-anti-VEGF preserves by 82% the outer nuclear layer from degeneration. Outer segments (OS) appeared well organized with an appropriate length in the LV-anti-VEGF group compared to controls, and the expression of SWL-opsin is maintained in the OS without being mislocalized as in the LV-GFP group. Finally, LV-anti-VEGF treatment prevents BRB breakdown and maintained RPE cell integrity.Conclusions: This study involves VEGF in LD and highlights the prime importance of the BRB integrity for PR survival. Taken together, these results show that anti-VEGF is neuroprotective in this model and maintains functional PR layer in LD-treated mice.
Resumo:
A program of A (90 day moist room), B (14 day moist room) and C (7 day moist room and 7 day 50%_humidity) type curing for the R-11-Z program of durability of concrete using the automatic freeze and thaw machine (ASTM C-291) has been used in the Materials Department of the Iowa State Highway Commission since December 6, 1966. A summary of the results obtained from then until March 25, 1968, indicates that the B and C type curing are yielding very little valuable information. However, the A cure exhibits a wide range of durability factors and also groups the aggregates in an order which is related to the service record (there are definite exceptions. The biggest disadvantage to the A cure is the length of time that it takes to complete the test (90 day cure and 38 day test). The Kansas Highway Department has experimented with different cements and aggregates in order to determine which combination offers a concrete with the best durability factor possible. In an experimental test section of highway, concrete made with a Type II cement appeared to have better durability than others made with Type I cements. Because of this, a question has been raised at the Iowa State Highway Commission - Can concrete made with Type II cements, because of a lesser amount of tricalcium aluminate, yield better durability than concrete made with Type I cements?
Resumo:
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
Catheter-related infection remains a leading cause of nosocomial infections, particularly in intensive care units. It includes colonization of the device, skin exit-site infection and device- or catheter-related bloodstream infection. The latter represents the most frequent life-threatening associated complication of central venous catheter use and is associated with significant patient morbidity, mortality and extra hospital costs. The incidence of catheter-related bloodstream infection ranges from 2 to 14 episodes per 1000 catheter-days. On average, microbiologically-documented device-related bloodstream infections complicate from three to five per 100 central venous line uses, but they only represent the visible part of the iceberg and most clinical sepsis are nowadays considered to be catheter-related. We briefly review the pathophysiology of infection, highlighting the importance of the skin insertion site and of intravenous line hub as principal sources of colonization. Principles of therapy are reviewed. Several preventive approaches are also discussed, in particular the possible benefit of recently developed impregnated catheters. Finally, the potential positive impact of a multimodal global preventive strategy based on strict application of hygienic rules is presented.
Resumo:
This article summarizes the basic principles of light microscopy, with examples of applications in biomedicine that illustrate the capabilities of thetechnique.
Resumo:
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Resumo:
Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.
Resumo:
Cutaneous squamous cell carcinoma (SCC) represents the most important cutaneous complication following organ transplantation. It develops mostly on sun-exposed areas. A recent study showed the role of activating transcription factor 3 (ATF3) in SCC development following treatment with calcineurin inhibitors. It has been reported that ATF3, which may act as an oncogene, is under negative calcineurin/nuclear factor of activated T cells (NFAT) control and is upregulated by calcineurin inhibitors. Still, these findings do not fully explain the preferential appearance of SCC on chronically sun-damaged skin. We analyzed the influence of UV radiation on ATF3 expression and its potential role in SCC development. We found that ATF3 is a specifically induced AP1 member in SCC of transplanted patients. Its expression was strongly potentiated by combination of cyclosporine A and UVA treatment. UVA induced ATF3 expression through reactive oxygen species-mediated nuclear factor erythroid 2-related factor 2 (NRF2) activation independently of calcineurin/NFAT inhibition. Activated NRF2 directly binds to ATF3 promoter, thus inducing its expression. These results demonstrate two mechanisms that independently induce and, when combined together, potentiate the expression of ATF3, which may then force SCC development. Taking into account the previously defined role of ATF3 in the SCC development, these findings may provide an explanation and a mechanism for the frequently observed burden on SCCs on sun-exposed areas of the skin in organ transplant recipients treated by calcineurin inhibitors.
Resumo:
Audit report of the financial statements of the governmental activities, the business type activities, the aggregate discretely presented component units, each major fund and the aggregate remaining fund information of the State of Iowa as of and for the year ended June 30, 2014
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
Red light running continues to be a serious safety concern for many communities in the United States. The Federal Highway Administration reported that in 2011, red light running accounted for 676 fatalities nationwide. Red light running crashes at a signalized intersections are more serious, especially in high speed corridors where speeds are above 35 mph. Many communities have invested in red light countermeasures including low-cost strategies (e.g. signal backplates, targeted enforcement, signal timing adjustments and improvement with signage) to high-cost strategies (e.g. automated enforcement and intersection geometric improvements). This research study investigated intersection confirmation lights as a low-cost strategy to reduce red light running violations. Two intersections in Altoona and Waterloo, Iowa were equipped with confirmation lights which targeted the through and left turning movements. Confirmation lights enable a single police officer to monitor a specific lane of traffic downstream of the intersection. A before-after analysis was conducted in which a change in red light running violations prior to- and 1 and 3 months after installation were evaluated. A test of proportions was used to determine if the change in red light running violation rates were statistically significant at the 90 and 95 percent levels of confidence. The two treatment intersections were then compared to the changes of red light running violation rates at spillover intersections (directly adjacent to the treatment intersections) and control intersections. The results of the analysis indicated a 10 percent reduction of red light running violations in Altoona and a 299 percent increase in Waterloo at the treatment locations. Finally, the research team investigated the time into red for each observed red light running violation. The analysis indicated that many of the violations occurred less than one second into the red phase and that most of the violation occurred during or shortly after the all-red phase.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
Mississippi Tialley-type zinc-lead deposits and ore occurrences in the San Vicente belt are hosted in dolostones of the eastern Upper Triassic to Lower Jurassic Pucara basin, central Peru. Combined inorganic and organic geochemical data from 22 sites, including the main San Vicente deposit, minor ore occurrences, and barren localities, provide better understanding of fluid pathways and composition, ore precipitation mechanisms, Eh-pH changes during mineralization, and relationships between organic matter and ore formation. Ore-stage dark replacement dolomite and white sparry dolomite are Fe and rare earth element (REE) depleted, and Mn enriched, compared to the host dolomite. In the main deposit, they display significant negative Ce and probably Eu anomalies. Mixing of an incoming hot, slightly oxidizing, acidic brine (H2CO3 being the dominant dissolved carbon species), probably poor in REE and Fe, with local intraformational, alkaline, reducing waters explains the overall carbon and oxygen isotope variation and the distributions of REE and other trace elements in the different hydrothermal carbonate generations. The incoming ore fluid flowed through major aquifers, probably basal basin detrital units, with limited interaction with the carbonate host rocks. The hydrothermal carbonates show a strong regional chemical homogeneity, indicating access of the ore fluids by interconnected channelways near the ore occurrences. Negative Ce anomalies in the main deposit, that are absent at the district scale, indicate local ore-fluid chemical differences. Oxidation of both migrated and indigenous hydrocarbons by the incoming fluid provided the local reducing conditions necessary for sulfate reduction to H2S, pyrobitumen precipitation, and reduction of Eu3+ to Eu2+. Fe-Mn covariations, combined with the REE contents of the hydrothermal carbonates, are consistent with the mineralizing system shifting from reducing/rock-dominated to oxidizing/fluid-dominated conditions following ore deposition. Sulfate and sulfide sulfur isotopes support sulfide origin from evaporite-derived sulfate by thermochemical organic reduction; further evidence includes the presence of C-13-depleted calcite cements (similar to-12 parts per thousand delta(13)C) as sulfate pseudomorphs, elemental sulfur, altered organic matter in the host dolomite, and isotopically heavier, late, solid bitumen. Significant alteration of the indigenous and extrinsic hydrocarbons, with absent bacterial membrane biomarkers (hopanes) is observed. The light delta(34)S of sulfides from small mines and occurrences compared to the main deposit reflect a local contribution of isotopically light sulfur, evidence of local differences in the ore-fluid chemistry.