921 resultados para Light Culture and Dark Culture
Resumo:
In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling cyanobacterial behaviour in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes, reservoirs and rivers. A new deterministic–mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including light, nutrients and temperature. A parameter sensitivity analysis using a one-at-a-time approach was carried out. There were two objectives of the sensitivity analysis presented in this paper: to identify the key parameters controlling the growth and movement patterns of cyanobacteria and to provide a means for model validation. The result of the analysis suggested that maximum growth rate and day length period were the most significant parameters in determining the population growth and colony depth, respectively.
Resumo:
The use of light microscopy and DMACA staining strongly suggested that plant and animal cell nuclei act as sinks for flavanols [1, 2]. Detailed uv-vis spectroscopic titration experiments indicated that histone proteins are the likely binding sites in the nucleus [2]. Here we report the development of a multi-photon excitation microscopy technique combined with fluorescent lifetime measurements of flavanols. Using this technique, (+) catechin, (-) epicatechin and (-) epigallocatechin gallate (EGCG) showed strikingly different excited state lifetimes in solution. Interaction of histone proteins with flavanols was indicated by the appearance of a significant τ2-component of 1.7 to 4.0ns. Tryptophan interference could be circumvented in the in vivo fluorescence lifetime imaging microscopy (FLIM) experiments with 2-photon excitation at 630nm. This enabled visualisation and semi-quantitative measurements that demonstrated unequivocally the absorption of (+)catechin, (-)epicatechin and EGCG by nuclei of onion cells. 3D FLIM revealed for the first time that externally added EGCG penetrated the whole nucleus in onion cells. The relative proportions of EGCG in cytoplasm: nucleus: nucleoli were ca. 1:10:100. FLIM experiments may therefore facilitate probing the health effects of EGCG, which is the major constituent of green tea.
Resumo:
Particulate antigen assemblies in the nanometer range and DNA plasmids are particularly interesting for designing vaccines. We hypothesised that a combination of these approaches could result in a new delivery method of gp160 envelope HIV-1 vaccine which could combine the potency of virus-like particles (VLPs) and the simplicity of use of DNA vaccines. Characterisation of lentivirus-like particles (lentiVLPs) by western blot, dynamic light scattering and electron microscopy revealed that their protein pattern, size and structure make them promising candidates for HIV-1 vaccines. Although all particles were similar with regard to size and distribution, they clearly differed in p24 capsid protein content suggesting that Rev may be required for particle maturation and Gag processing. In vivo, lentiVLP pseudotyping with the gp160 envelope or with a combination of gp160 and VSV-G envelopes did not influence the magnitude of the immune response but the combination of lentiVLPs with Alum adjuvant resulted in a more potent response. Interestingly, the strongest immune response was obtained when plasmids encoding lentiVLPs were co-delivered to mice muscles by electrotransfer, suggesting that lentiVLPs were efficiently produced in vivo or the packaging genes mediate an adjuvant effect. DNA electrotransfer of plasmids encoding lentivirus-like particles offers many advantages and appears therefore as a promising delivery method of HIV-1 vaccines. Keywords:VLP, Electroporation, Electrotransfer, HIV vaccine, DNA vaccine
Resumo:
It is now established that native language affects one's perception of the world. However, it is unknown whether this effect is merely driven by conscious, language-based evaluation of the environment or whether it reflects fundamental differences in perceptual processing between individuals speaking different languages. Using brain potentials, we demonstrate that the existence in Greek of 2 color terms—ghalazio and ble—distinguishing light and dark blue leads to greater and faster perceptual discrimination of these colors in native speakers of Greek than in native speakers of English. The visual mismatch negativity, an index of automatic and preattentive change detection, was similar for blue and green deviant stimuli during a color oddball detection task in English participants, but it was significantly larger for blue than green deviant stimuli in native speakers of Greek. These findings establish an implicit effect of language-specific terminology on human color perception.
Resumo:
We derive simple analytic expressions for the continuum light curves and spectra of flaring and flickering events that occur over a wide range of astrophysical systems. We compare these results to data taken from the cataclysmic variable SS Cygni and also from SN 1987A, deriving physical parameters for the material involved. Fits to the data indicate a nearly time-independent photospheric temperature arising from the strong temperature dependence of opacity when hydrogen is partially ionized.
Resumo:
The tolerance of Callosobruchus maculatus from different geographical locations reared on two cowpea varieties, pale brown Ife Brown (IFBV) and dark brown IAR48 (IAR48V), to seed powder of Piper guineense (Schum and Thonn) was investigated. C. maculatus populations were collected from nine different locations across Osun state in the South Western part of Nigeria. The main and interactive effects of cowpea variety, population origin and dose on C. maculatus tolerance to P. guineense were explored. It was observed that bruchids that emerged from IAR48V had greater tolerance of P. guineense than bruchids reared on IFBV. There were significant effects (P < 0.001) of cowpea variety, population and dose, and significant interactions among these factors (except variety � dose, P > 0.05) on the response of bruchids to P. guineense. When reared on IAR48V, bruchid populations from the North-Eastern part of the state show greater tolerance to P. guineense than their counterparts from the SoutheWest. This study underscores the importance of knowledge of the origin of the population and the cowpea variety on which C. maculatus developed when managing bruchids damage using P. guineense
Resumo:
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
Resumo:
This study investigates the structural features of porcine gastric mucin (PGM) in aqueous dispersions and its interactions with water-soluble polymers (poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(ethylene oxide), and poly(ethylene glycol)) using isothermal titration calorimetry, turbidimetric titration, dynamic light scattering, and transmission electron microscopy. It is established that PAA (450 kDa) and PMAA (100 kDa) exhibit strong specific interactions with PGM causing further aggregation of its particles, while PAA (2 kDa), poly(ethylene oxide) (1 000 kDa), and poly(ethylene glycol) (10 kDa) do not show any detectable effects on mucin. Sonication of mucin dispersions prior to their mixing with PAA (450 kDa) and PMAA (100 kDa) leads to more pronounced intensity of interactions.
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Resumo:
Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.
Resumo:
There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30 " latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m -2 ). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m -2 . The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.