909 resultados para Level of analysis
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.
Resumo:
Summary During the infection of Lepidoptera larvae with baculoviruses the horizontal escape of Tc1-like transposons, termed TCl4.7 and TCp3.2, from the genome of the host Cryptophlebia leucotreta and Cydia pomonella into the genome of Cydia pomonella granulovirus was observed. In this study we addressed the question whether the transposon harboring viruses had a replication advantage over the wild-type and became dominant in the virus population or whether the activity of the host transposable elements is stimulated by virus infection. Biological characterization studies demonstrated that the transposon containing viruses killed C. pomonella larvae slower than CpGV-M. In co-infection experiments of C. pomonella larvae using a mixture of CpGV-M and mutant viruses as inoculum, it was shown that the transposon carrying mutants had a significant selection disadvantage compared to CpGV-M. Transcription levels of the transposase gene of TCp3.2 were investigated in virus infected and uninfected larvae. These experiments demonstrated that a higher level of transposase transcription was detectable in CpGV-M infected than in mock infected control larvae. This observation gave strong evidence that CpGV-M infection might trigger the activity of transposon TCp3.2 within the genome of Cydia pomonella. Our results suggest that the horizontal transfer of insect host transposons into baculovirus genomes might be induced by virus infection.
Resumo:
The dissertation is structured in three parts. The first part compares US and EU agricultural policies since the end of WWII. There is not enough evidence for claiming that agricultural support has a negative impact on obesity trends. I discuss the possibility of an exchange in best practices to fight obesity. There are relevant economic, societal and legal differences between the US and the EU. However, partnerships against obesity are welcomed. The second part presents a socio-ecological model of the determinants of obesity. I employ an interdisciplinary model because it captures the simultaneous influence of several variables. Obesity is an interaction of pre-birth, primary and secondary socialization factors. To test the significance of each factor, I use data from the National Longitudinal Survey of Adolescent Health. I compare the average body mass index across different populations. Differences in means are statistically significant. In the last part I use the National Survey of Children Health. I analyze the effect that family characteristics, built environment, cultural norms and individual factors have on the body mass index (BMI). I use Ordered Probit models and I calculate the marginal effects. I use State and ethnicity fixed effects to control for unobserved heterogeneity. I find that southern US States tend have on average a higher probability of being obese. On the ethnicity side, White Americans have a lower BMI respect to Black Americans, Hispanics and American Indians Native Islanders; being Asian is associated with a lower probability of being obese. In neighborhoods where trust level and safety perception are higher, children are less overweight and obese. Similar results are shown for higher level of parental income and education. Breastfeeding has a negative impact. Higher values of measures of behavioral disorders have a positive and significant impact on obesity, as predicted by the theory.
Resumo:
Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.
Resumo:
In this work we developed a new and convenient method for high resolution IEF of proteins, which we termed: “daisy chain”. Usually an IEF is accomplished with IPG strips of a desired pH range. For high resolution focusing we are using strips with pH range, which covers only one or two pH units. Thereby the pro-teins, which have isoelectrical point outside of this pH range, are lost. We evalu-ated commercially available IPG strips with consecutive or overlapping pH ranges and connected them serially acidic to basic end, to construct in this way a high resolution IEF-system. For the first time, we showed that a high resolution IEF is possible in such a system and that results were by no means worse than those obtained when the same sample was analyzed on individual single IPGs. The great advantage of our system is that amount of sample used in serial IPG IEF is explicitly lower than when same sample was analyzed on individual single IPGs. This method was subsequently successfully applied to valuable clinical samples from cancer patients and to mitochondrial preparations related to a European project in gerontology. We thus developed a suite of experimental strategies, which adequately address complex biological situations, in particular on the level of protein expression.
Resumo:
Complex Networks analysis turn out to be a very promising field of research, testified by many research projects and works that span different fields. Those analysis have been usually focused on characterize a single aspect of the system and a study that considers many informative axes along with a network evolve is lacking. We propose a new multidimensional analysis that is able to inspect networks in the two most important dimensions, space and time. To achieve this goal, we studied them singularly and investigated how the variation of the constituting parameters drives changes to the network as a whole. By focusing on space dimension, we characterized spatial alteration in terms of abstraction levels. We proposed a novel algorithm that, by applying a fuzziness function, can reconstruct networks under different level of details. We verified that statistical indicators depend strongly on the granularity with which a system is described and on the class of networks. We keep fixed the space axes and we isolated the dynamics behind networks evolution process. We detected new instincts that trigger social networks utilization and spread the adoption of novel communities. We formalized this enhanced social network evolution by adopting special nodes (called sirens) that, thanks to their ability to attract new links, were able to construct efficient connection patterns. We simulated the dynamics of the system by considering three well-known growth models. Applying this framework to real and synthetic networks, we showed that the sirens, even when used for a limited time span, effectively shrink the time needed to get a network in mature state. In order to provide a concrete context of our findings, we formalized the cost of setting up such enhancement and provided the best combinations of system's parameters, such as number of sirens, time span of utilization and attractiveness.
Resumo:
Italy registers a fast increase of low income population. Academics and policy makers consider income inequalities as a key determinant for low or inadequate healthy food consumption. Thus the objective is to understand how to overcome the agrofood chain barriers towards healthy food production, commercialisation and consumption for population at risk of poverty (ROP) in Italy. The study adopts a market oriented food chain approach, focusing the research ambit on ROP consumers, processing industries and retailers. The empirical investigation adopts a qualitative methodology with an explorative approach. The actors are investigated through 4 focus groups for consumers and carrying out 27 face to face semi-structured interviews for industries and retailers’ representatives. The results achieved provide the perceptions of each actor integrated into an overall chain approach. The analysis shows that all agrofood actors lack of an adequate level of knowledge towards healthy food definition. Food industries and retailers also show poor awareness about ROP consumers’ segment. In addition they perceive that the high costs for producing healthy food conflict with the low economic performances expected from ROP consumers’ segment. These aspects induce a scarce interest in investing on commercialisation strategies for healthy food for ROP consumers. Further ROP consumers show other notable barriers to adopt healthy diets caused, among others, by a personal strong negative attitude and lack of motivation. The personal barriers are also negatively influenced by several external socio-economic factors. The solutions to overcome the barriers shall rely on the improvement of the agrofood chain internal relations to identify successful strategies for increasing interest on low cost healthy food. In particular the focus should be on improved collaboration on innovation adoption and marketing strategies, considering ROP consumers’ preferences and needs. An external political intervention is instead necessary to fill the knowledge and regulations’ gaps on healthy food issues.
Resumo:
Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.
Resumo:
Tractor rollover represent a primary cause of death or serious injury in agriculture and despite the mandatory Roll-Over Protective Structures (ROPS), that reduced the number of injuries, tractor accidents are still of great concern. Because of their versatility and wide use many studies on safety are concerned with the stability of tractors, but they often prefer controlled tests or laboratory tests. The evaluation of tractors working in field, instead, is a very complex issue because the rollover could be influenced by the interaction among operator, tractor and environment. Recent studies are oriented towards the evaluation of the actual working conditions developing prototypes for driver assistance and data acquisition. Currently these devices are produced and sold by manufacturers. A warning device was assessed in this study with the aim to evaluate its performance and to collect data on different variables influencing the dynamics of tractors in field by monitoring continuously the working conditions of tractors operating at the experimental farm of the Bologna University. The device consists of accelerometers, gyroscope, GSM/GPRS, GPS for geo-referencing and a transceiver for the automatic recognition of tractor-connected equipment. A microprocessor processes data and provides information, through a dedicated algorithm requiring data on the geometry of the tested tractor, on the level of risk for the operator in terms of probable loss of stability and suggests corrective measures to reduce the potential instability of the tractor.
Resumo:
The study defines a new farm classification and identifies the arable land management. These aspects and several indicators are taken into account to estimate the sustainability level of farms, for organic and conventional regimes. The data source is Italian Farm Account Data Network (RICA) for years 2007-2011, which samples structural and economical information. An environmental data has been added to the previous one to better describe the farm context. The new farm classification describes holding by general informations and farm structure. The general information are: adopted regime and farm location in terms of administrative region, slope and phyto-climatic zone. The farm structures describe the presence of main productive processes and land covers, which are recorded by FADN database. The farms, grouped by homogeneous farm structure or farm typology, are evaluated in terms of sustainability. The farm model MAD has been used to estimate a list of indicators. They describe especially environmental and economical areas of sustainability. Finally arable lands are taken into account to identify arable land managements and crop rotations. Each arable land has been classified by crop pattern. Then crop rotation management has been analysed by spatial and temporal approaches. The analysis reports a high variability inside regimes. The farm structure influences indicators level more than regimes, and it is not always possible to compare the two regimes. However some differences between organic and conventional agriculture have been found. Organic farm structures report different frequency and geographical location than conventional ones. Also different connections among arable lands and farm structures have been identified.