768 resultados para Learning theory
Resumo:
El presente estudio analiza las intenciones de los usuarios acerca del uso de sistemas de tele-enseñanza LMS (Learning Management Systems, basándose en un modelo que integra el Modelo de Aceptación Tecnológica (TAM, Technology Acceptance Model, la Teoría del Comportamiento Percibido (TPB, Theory of Planned Behavior) y la Teoría Unificada de la Aceptación y Uso de la Tecnología (UTAUT, Unified Theory of Acceptance and Use of Technology), tomando la edad como variable moderadora. Así, este artículo estudia la influencia de la intención conductual, la actitud hacia el uso, la facilidad de uso percibida, la utilidad percibida, la norma subjetiva y la influencia social en la intención de utilizar sistemas e-learning LMS. Como antecedentes de estos factores de influencia se plantean las características del sistema y del usuario. El resultado de la revisión teórica es un modelo unificado que ha sido validado con datos recogidos de 94 estudiantes a través de un cuestionario en línea. Estos datos han sido analizados utilizando la técnica de mínimos cuadrados parciales, y los principales resultados confirman la relevancia predictiva del modelo para usuarios de entre 26 y 35 años y de entre 36 y 45 años.
Resumo:
At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Purpose – The purpose of this paper is to analyze how team management affects team-learning activities. Design/methodology/approach – The authors empirically study 68 teams as they operate in the natural business context of a major Spanish bank. Quantitative research utilizing multiple regression analyses is used to test hypotheses. Findings – The leadership behaviour (consideration, initiation of structure) displayed by the team leader plays a key role in facilitating team learning. Team leader behaviour characterised by consideration and in particular by initiation of structure are both positively related to team-learning activities. Cross-training of team members also contributes to team-learning behaviour. Research limitations/implications – A specific setting may limit the generalizability of findings. Further research may accordingly investigate to what extent these results can be generalized to other settings or other aspects of team learning. Practical implications – The leadership style adopted by the team leader, as well as cross-training of members, affect team-learning activities. These results link leadership theory to collective learning in teams and organizations, and suggest ways leaders can contribute to improved learning. Originality/value – The study provides new insight into how management of teams facilitates team-learning activities. While consideration is somewhat related to team learning, initiation of structure as well as cross-training appear as key variables.
Resumo:
This paper aims to outline a theory-based Content and Language Integrated Learning course and to establish the rationale for adopting a holistic approach to the teaching of languages in tertiary education. Our work focuses on the interdependence between Content and Language Integrated Learning (CLIL), and the use of Information and Communication Technologies (ICT), in particular regarding the learning of English within the framework of Telecommunications Engineering. The study first analyses the diverse components of the instructional approach and the extent to which this approach interrelates with technologies within the context of what we have defined as a holistic experience, since it also aims to develop a set of generic competences or transferable skills. Second, an example of a course project framed in this holistic approach is described in order to exemplify the specific actions suggested for learner autonomy and CLIL. The approach provides both an adequate framework as well as the conditions needed to carry out a lifelong learning experience within our context, a Spanish School of Engineering. In addition to specialized language and content, the approach integrates the learning of skills and capacities required by the new plans that have been established following the Bologna Declaration in 1999.
Resumo:
This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)
Resumo:
El principio de Teoría de Juegos permite desarrollar modelos estocásticos de patrullaje multi-robot para proteger infraestructuras criticas. La protección de infraestructuras criticas representa un gran reto para los países al rededor del mundo, principalmente después de los ataques terroristas llevados a cabo la década pasada. En este documento el termino infraestructura hace referencia a aeropuertos, plantas nucleares u otros instalaciones. El problema de patrullaje se define como la actividad de patrullar un entorno determinado para monitorear cualquier actividad o sensar algunas variables ambientales. En esta actividad, un grupo de robots debe visitar un conjunto de puntos de interés definidos en un entorno en intervalos de tiempo irregulares con propósitos de seguridad. Los modelos de partullaje multi-robot son utilizados para resolver este problema. Hasta el momento existen trabajos que resuelven este problema utilizando diversos principios matemáticos. Los modelos de patrullaje multi-robot desarrollados en esos trabajos representan un gran avance en este campo de investigación. Sin embargo, los modelos con los mejores resultados no son viables para aplicaciones de seguridad debido a su naturaleza centralizada y determinista. Esta tesis presenta cinco modelos de patrullaje multi-robot distribuidos e impredecibles basados en modelos matemáticos de aprendizaje de Teoría de Juegos. El objetivo del desarrollo de estos modelos está en resolver los inconvenientes presentes en trabajos preliminares. Con esta finalidad, el problema de patrullaje multi-robot se formuló utilizando conceptos de Teoría de Grafos, en la cual se definieron varios juegos en cada vértice de un grafo. Los modelos de patrullaje multi-robot desarrollados en este trabajo de investigación se han validado y comparado con los mejores modelos disponibles en la literatura. Para llevar a cabo tanto la validación como la comparación se ha utilizado un simulador de patrullaje y un grupo de robots reales. Los resultados experimentales muestran que los modelos de patrullaje desarrollados en este trabajo de investigación trabajan mejor que modelos de trabajos previos en el 80% de 150 casos de estudio. Además de esto, estos modelos cuentan con varias características importantes tales como distribución, robustez, escalabilidad y dinamismo. Los avances logrados con este trabajo de investigación dan evidencia del potencial de Teoría de Juegos para desarrollar modelos de patrullaje útiles para proteger infraestructuras. ABSTRACT Game theory principle allows to developing stochastic multi-robot patrolling models to protect critical infrastructures. Critical infrastructures protection is a great concern for countries around the world, mainly due to terrorist attacks in the last decade. In this document, the term infrastructures includes airports, nuclear power plants, and many other facilities. The patrolling problem is defined as the activity of traversing a given environment to monitoring any activity or sensing some environmental variables If this activity were performed by a fleet of robots, they would have to visit some places of interest of an environment at irregular intervals of time for security purposes. This problem is solved using multi-robot patrolling models. To date, literature works have been solved this problem applying various mathematical principles.The multi-robot patrolling models developed in those works represent great advances in this field. However, the models that obtain the best results are unfeasible for security applications due to their centralized and predictable nature. This thesis presents five distributed and unpredictable multi-robot patrolling models based on mathematical learning models derived from Game Theory. These multi-robot patrolling models aim at overcoming the disadvantages of previous work. To this end, the multi-robot patrolling problem was formulated using concepts of Graph Theory to represent the environment. Several normal-form games were defined at each vertex of a graph in this formulation. The multi-robot patrolling models developed in this research work have been validated and compared with best ranked multi-robot patrolling models in the literature. Both validation and comparison were preformed by using both a patrolling simulator and real robots. Experimental results show that the multirobot patrolling models developed in this research work improve previous ones in as many as 80% of 150 cases of study. Moreover, these multi-robot patrolling models rely on several features to highlight in security applications such as distribution, robustness, scalability, and dynamism. The achievements obtained in this research work validate the potential of Game Theory to develop patrolling models to protect infrastructures.
Resumo:
Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.
Resumo:
Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.
Resumo:
Integration of experiential learning into the library and information science (LIS) courses has been a theme in LIS education, but the topic deserves renewed attention with an increasing demand for professionals in the digital library field and in light of the new initiative announced by the Library of Congress (LC) and the Institution of Museum and Library Services (IMLS) for national residency program in digital curation. The balance between theory and practice in digital library curricula, the challenges of incorporating practical projects into LIS coursework, and the current practice of teaching with hands on activities represent the primary areas of this panel discussion.
Resumo:
Background: Despite the progress made on policies and programmes to strengthen primary health care teams’ response to Intimate Partner Violence, the literature shows that encounters between women exposed to IPV and health-care providers are not always satisfactory, and a number of barriers that prevent individual health-care providers from responding to IPV have been identified. We carried out a realist case study, for which we developed and tested a programme theory that seeks to explain how, why and under which circumstances a primary health care team in Spain learned to respond to IPV. Methods: A realist case study design was chosen to allow for an in-depth exploration of the linkages between context, intervention, mechanisms and outcomes as they happen in their natural setting. The first author collected data at the primary health care center La Virgen (pseudonym) through the review of documents, observation and interviews with health systems’ managers, team members, women patients, and members of external services. The quality of the IPV case management was assessed with the PREMIS tool. Results: This study found that the health care team at La Virgen has managed 1) to engage a number of staff members in actively responding to IPV, 2) to establish good coordination, mutual support and continuous learning processes related to IPV, 3) to establish adequate internal referrals within La Virgen, and 4) to establish good coordination and referral systems with other services. Team and individual level factors have triggered the capacity and interest in creating spaces for team leaning, team work and therapeutic responses to IPV in La Virgen, although individual motivation strongly affected this mechanism. Regional interventions did not trigger individual and/ or team responses but legitimated the workings of motivated professionals. Conclusions: The primary health care team of La Virgen is involved in a continuous learning process, even as participation in the process varies between professionals. This process has been supported, but not caused, by a favourable policy for integration of a health care response to IPV. Specific contextual factors of La Virgen facilitated the uptake of the policy. To some extent, the performance of La Virgen has the potential to shape the IPV learning processes of other primary health care teams in Murcia.
Resumo:
Publisher's advertisements: [2] p. at end.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06