955 resultados para Layer-by-layer technique
Resumo:
A finite element homogenization method for a shear actuated d(15) macro-fibre composite (MFC) made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite, electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material properties. The methodology is first validated for the MFC active layer only, made of piezoceramic fibre and epoxy, through comparison with previously published analytical results. Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. However, it is found that the piezoelectric charge constant d(15) is less affected by the softer layers required by the MFC packaging.
Resumo:
The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with silica nanoparticles in naturally aerated 0.1 mol L-1 NaCl solutions was evaluated. The coating was prepared by adding different concentrations of silica nanoparticles (100, 200, 300, 400 and 500 ppm) to the hydrolysis solution and then a second layer without silica nanoparticles was applied. The electrochemical behavior of the coated steel was evaluated by means of open-circuit potential (E-OC), electrochemical impedance spectroscopy (EIS) and polarization curves. Surface characterization was made by atomic force microscopy (AFM), and its hydrophobicity assessed by contact angle measurements. EIS diagrams have shown an improvement of the barrier properties of the silane layer with the silica addition, which was further improved on the bi-layer system. However, a dependence on the filler concentration was verified, and the best electrochemical response was obtained for samples modified with 300 ppm of silica nanoparticles. AFM images have shown a homogeneous distribution of the silica nanoparticles on the sample surface; however particles agglomeration was detected, which degraded the corrosion protection performance. The results were explained on the basis of the improvement of the barrier properties of the coating due to the filler addition and on the onset of defective regions on the more heavily filled coatings allowing easier electrolyte penetration. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.
Resumo:
Influence of light and leaf epicuticular wax layer on Phakopsora pachyrhizi infection in soybean Asian rust, caused by the fungus Phakopsora pachyrhizi, is one of the most serious phytosanitary problems of soybean in Brazil, especially because no cultivars with satisfactory resistance levels as yet exist. The objective of this study was to evaluate the influence of luminosity and of leaf epicuticular wax on the infection of soybean by P. pachyrhizi. The adaxial and abaxial leaflet surfaces of the first trifoliate leaf from cultivar BRS 154, phenological stage V2, were inoculated with a suspension of 105 uredospores/mL. The plants were kept for 24 hours in a humid chamber at temperature of 23 degrees C, in light or dark conditions, using a factorial design. Subsequently, the plants were maintained for 14 days under a 12-hour photoperiod. The disease severity and density were evaluated. For in vitro experiments, in light or dark conditions, the evaluation was done in terms of uredospore germination and appressorium formation. The wax content of adaxial and abaxial leaflets was analyzed quantitatively using chloroform extraction and ultrastructurally using scanning electron microscope. Higher density and severity were observed when the adaxial surface was inoculated, with later incubation of the plants in the dark, with no significant interaction between these factors. Spore germination in the dark (40.7%) was statistically different from spore germination in the light (28.5%). The same effect was observed with appressorium formation, in the dark (24.7%) and in the light (12.8%). The quantity and the ultrastructural aspects of epicuticular wax content did not show differences between the adaxial and abaxial surfaces; nor did they show any effect on infection by Phakopsora pachyrhizi in the soybean cultivar studied.
Resumo:
Autologous hematopoietic stem cell transplantation (HSCT) has proved efficient to treat hematological malignancies. However, some patients fail to mobilize HSCs. It is known that the microenvironment may undergo damage after allogeneic HSCT. However little is known about how chemotherapy and growth factors contribute to this damage. We studied the stromal layer formation(SLF) and velocity before and after HSC mobilization, through long-term bone marrow culture from 22 patients and 10 healthy donors. Patients` SLF was similar at pre- (12/22)and post-mobilization (9/20), however for controls this occurred more at pre- mobilization (9/10; p=0.03). SLF velocity was higher at pre than post-mobilization in both groups. Leukemias and multiple myeloma showed faster growth of SLF than lymphomas at post-mobilization, the latter being similar to controls. These findings could be explained by less uncommitted HSC in controls than patients at post-mobilization. Control HSCs may migrate more in response to mobilization, resulting in a reduced population by those cells.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The intercalated discs of working myocardium and Purkinje fibers of the monkey heart were examined by scanning and transmission electron microscopy. The NaOH/ultrasonication technique resulted in the digestion of connective tissue and a separation of the intercellular junctions of intercalated discs, such that these could be visualized three-dimensionally. The intercalated discs of ventricular myocytes, atrial myocytes and Purkinje fibers vary considerably in number and configuration, as do the intercalated discs of the three different layers of the ventricular myocardium. Myocytes in the subepicardial, middle and subendocardial layers of the ventricle have 1-3, 4-5 and 5-6 intercalated discs at the end of these cells, respectively, Those in the endocardial layer are characterized by the presence of small laterally-placed intercalated discs. Atrial myocytes and Purkinje fibers usually only have 1-2 intercalated discs, Individual intercalated discs in ventricular myocytes have complicated stairs with 10-30 steps and corresponding risers, while those of atrial myocytes and Purkinje fibers have simple stairs with 1-3 steps and risers, Steps equivalent to the plicate segments are characterized by densely-packed microplicae and finger-like microprojections which greatly increase surface area in vertricular myocytes, Microprojections in atrial myocytes and Purkinje fibers are sparse by comparison, Risers equivalent to the interplicate segments containing large gap junctional areas are most numerous in left ventricular myocytes, followed by right ventricular myocytes, Purkinje fibers and atrial myocytes in decreasing order. The geometric arrangement of the various types of myocytes may be related with impulse propagation. Large intercalated discs of cell trunks and series branches may participate in longitudinal propagation, while small laterally-placed ones may be the site of transverse propagation.
Resumo:
Purpose: To compare the ability of Subjective assessment of optic nerve head (ONH) and retinal nerve fiber layer (RNFL) by general ophthalmologists and by a glaucoma expert with objective measurements by optical coherence tomography (Stratus OCT, Carl Zeiss Meditec Inc), confocal scanning laser ophthalmoscope (HRT III; Heidelberg Engineering, Heidelberg. Germany), and scanning laser polarimetry (GDx enhanced corneal compensation; Carl Zeiss Meditec Inc, Dublin, CA) in discriminating glaucomatous and normal eyes. Methods: Sixty-one glaucomatous and 57 normal eyes or 118 subjects Were included in the study. Three independent general ophthalmologists and I glaucoma expert evaluated ONH stereo-photographs. Receiver operating characteristic curves were constructed for each imaging technique and sensitivity at fixed specificity was estimated. Comparisons or areas under these curves (aROCs) and agreement (k) were determined between stereophoto grading and best parameter from each technique. Results: Best parameter from each technique showed larger aROC (Stratus OCT RNFL 0.92; Stratus OCT ONH vertical integrated area = 0.86; Stratus OCT macular thickness = 0.82; GDx enhanced corneal compensation = 0.91, HRT3 global cup-to-disc ratio = 0.83; HRT3 glaucoma probability score numeric area score 0.83) compared with stereophotograph grading by general ophthalmologists (0.80) in separating glaucomatous and normal eyes. Glaucoma expert stereophoto grading provided equal or larger aROC (0.92) than best parameter of each computerized imaging device. Stereophoto evaluated by a glaucoma expert showed better agreement with best parameter of each quantitative imaging technique in classifying eyes either as glaucomatous or normal compared with stereophoto grading by general ophthalmologists, The combination Of Subjective assessment of the optic disc by general ophthalmologists with RNFL objective parameters improved identification of glaucoma patients in a larger proportion than the combination of these objective parameters with Subjective assessment of the optic disc by a glaucoma expert (29.5% vs. 19.7%, respectively). Conclusions: Diagnostic ability of all imaging techniques showed better performance than subjective assessment of the ONH by general ophthalmologists, but not by It glaucoma expert, Objective RNFL measurements may provide improvement in glaucoma detection when combined with subjective assessment of the optic disc by general ophthalmologists or by a glaucoma expert.
Resumo:
PURPOSE. To evaluate and compare rates of change in neuro-retinal rim area (RA) and retinal nerve fiber layer thickness (RNFLT) measurements in glaucoma patients, those with suspected glaucoma, and normal subjects observed over time. METHODS. In this observational cohort study, patients recruited from two longitudinal studies (Diagnostic Innovations in Glaucoma Study-DIGS and African Descent and Evaluation Study-ADAGES) were observed with standard achromatic perimetry (SAP), optic disc stereophotographs, confocal scanning laser ophthalmoscopy (HRT-3; Heidelberg Engineering, Heidelberg, Germany), and scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma progression was determined by the Guided Progression Analysis software for standard automated perimetry [SAP] and by masked assessment of serial optic disc stereophotographs by expert graders. Random-coefficients models were used to evaluate rates of change in average RNFLT and global RA measurements and their relationship with glaucoma progression. RESULTS. At baseline, 194 (31%) eyes were glaucomatous, 347 (55%) had suspected glaucoma, and 88 (14%) were normal. Forty-six (9%) eyes showed progression by SAP and/or stereophotographs, during an average follow-up of 3.3 (+/-0.7) years. The average rate of decline for RNFLT measurements was significantly higher in the progressing group than in the non-progressing group (-0.65 vs. -0.11 mu m/y, respectively; P < 0.001), whereas RA decline was not significantly different between these groups (-0.0058 vs. -0.0073 mm(2)/y, respectively; P = 0.727). The areas under the receiver operating characteristic (ROC) curves used to discriminate progressing versus nonprogressing eyes were 0.811 and 0.507 for the rates of change in the RNFLT and RA, respectively (P < 0.001). CONCLUSIONS. The ability to discriminate eyes with progressing glaucoma by SAP and/or stereophotographs from stable eyes was significantly greater for RNFLT than for RA measurements. (Invest Ophthalmol Vis Sci. 2010;51:3531-3539) DOI: 10.1167/iovs.09-4350
Resumo:
Introduction: The aim of this study was to evaluate the effectiveness of different irrigant agitation techniques on smear layer removal in curved root canals. Methods: Mesiobuccal canals of 62 extracted lower molars with a curvature of 33 degrees were used and instrumented up to Pro Taper F2. The samples were divided into 3 experimental groups according to the final irrigation: conventional irrigation, ultrasonic irrigation, and sonic irrigation by using the Endo Activator system. The control group was composed of 2 specimens without any final irrigation. In all of the experimental groups, 5 mL of 17% ethylenediaminetetraacetic acid was used for 1 minute, and 5 mL of 2.5% NaOCl was used for 30 seconds. The analysis of the apical region was performed via scanning electron microscopy by 3 examiners. The data were submitted to the Kruskal-Wallis and Dunn tests (P<.05). Results: The activation systems removed significantly more smear layer than did conventional irrigation. Conclusions: Sonic and ultrasonic irrigation resulted in better removal of the smear layer in the apical third of curved root canals than did conventional irrigation. (J Endod 2011;37:1268-1271)
Resumo:
Objective. The objective of this study was to assess the influence of different final irrigating solutions on dentin permeability and smear layer removal using the same specimens and relate the results obtained. Study design. Forty anterior human teeth were instrumented and divided into 4 groups (n = 10) at the final rinse step, according to the irrigant used: G I (control) - 1% NaOCl; G II - 17% EDTA; G III - 17% EDTAT; and G IV - Biopure MTAD. The canals were filled with 0.5% methylene blue and maintained in bottles for 48 hours. The roots were transversally split in coronal, middle, and apical fragments. The specimens were photographed and analyzed regarding dye penetration. The fragments were then axially split and prepared for SEM. The photomicrographs were analyzed and qualified by scores. Results. Only the EDTA-T group exhibited statistical difference in which the apical third had less dentin permeability (P < .05). When a decalcifying agent was used, smear layer was removed, which did not happen in the NaOCl group. Regarding smear layer removal, differences were found only in the EDTA group in which the apical third presented more smear layer (P < .05). No correlation was found for both studies (r = 0.4207). Conclusions. There was not an even relationship between the results from both studies, which inferes that higher or lower dentinal permeability does not necessarily correspond to a higher or lower amount of smear layer. The analysis of dentin permeability and smear layer removal was shown to be a feasible procedure using the same specimens. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: e47-e51)