836 resultados para Large-scale survey


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the exponential increasing demands and uses of GIS data visualization system, such as urban planning, environment and climate change monitoring, weather simulation, hydrographic gauge and so forth, the geospatial vector and raster data visualization research, application and technology has become prevalent. However, we observe that current web GIS techniques are merely suitable for static vector and raster data where no dynamic overlaying layers. While it is desirable to enable visual explorations of large-scale dynamic vector and raster geospatial data in a web environment, improving the performance between backend datasets and the vector and raster applications remains a challenging technical issue. This dissertation is to implement these challenging and unimplemented areas: how to provide a large-scale dynamic vector and raster data visualization service with dynamic overlaying layers accessible from various client devices through a standard web browser, and how to make the large-scale dynamic vector and raster data visualization service as rapid as the static one. To accomplish these, a large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling and a comprehensive performance improvement solution are proposed, designed and implemented. They include: the quadtree-based indexing and parallel map tiling, the Legend String, the vector data visualization with dynamic layers overlaying, the vector data time series visualization, the algorithm of vector data rendering, the algorithm of raster data re-projection, the algorithm for elimination of superfluous level of detail, the algorithm for vector data gridding and re-grouping and the cluster servers side vector and raster data caching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by The research presented in this paper is part of the SINBAD project. Grant Number: STW (12058) and EPSRC (EP/J00507X/1, EP/J005541/1)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this work is to determine the true cost incurred by the Republic of Ireland and Northern Ireland in order to meet their EU renewable electricity targets. The primary all-island of Ireland policy goal is that 40% of electricity will come from renewable sources in 2020. From this it is expected that wind generation on the Irish electricity system will be in the region of 32-37% of total generation. This leads to issues resulting from wind energy being a non-synchronous, unpredictable and variable source of energy use on a scale never seen before for a single synchronous system. If changes are not made to traditional operational practices, the efficient running of the electricity system will be directly affected by these issues in the coming years. Using models of the electricity system for the all-island grid of Ireland, the effects of high wind energy penetration expected to be present in 2020 are examined. These models were developed using a unit commitment, economic dispatch tool called PLEXOS which allows for a detailed representation of the electricity system to be achieved down to individual generator level. These models replicate the true running of the electricity system through use of day-ahead scheduling and semi-relaxed use of these schedules that reflects the Transmission System Operator's of real time decision making on dispatch. In addition, it carefully considers other non-wind priority dispatch generation technologies that have an effect on the overall system. In the models developed, three main issues associated with wind energy integration were selected to be examined in detail to determine the sensitivity of assumptions presented in other studies. These three issues include wind energy's non-synchronous nature, its variability and spatial correlation, and its unpredictability. This leads to an examination of the effects in three areas: the need for system operation constraints required for system security; different onshore to offshore ratios of installed wind energy; and the degrees of accuracy in wind energy forecasting. Each of these areas directly impact the way in which the electricity system is run as they address each of the three issues associated with wind energy stated above, respectively. It is shown that assumptions in these three areas have a large effect on the results in terms of total generation costs, wind curtailment and generator technology type dispatch. In particular accounting for these issues has resulted in wind curtailment being predicted in much larger quantities than had been previously reported. This would have a large effect on wind energy companies because it is already a very low profit margin industry. Results from this work have shown that the relaxation of system operation constraints is crucial to the economic running of the electricity system with large improvements shown in the reduction of wind curtailment and system generation costs. There are clear benefits in having a proportion of the wind installed offshore in Ireland which would help to reduce variability of wind energy generation on the system and therefore reduce wind curtailment. With envisaged future improvements in day-ahead wind forecasting from 8% to 4% mean absolute error, there are potential reductions in wind curtailment system costs and open cycle gas turbine usage. This work illustrates the consequences of assumptions in the areas of system operation constraints, onshore/offshore installed wind capacities and accuracy in wind forecasting to better inform the true costs associated with running Ireland's changing electricity system as it continues to decarbonise into the near future. This work also proposes to illustrate, through the use of Ireland as a case study, the effects that will become ever more prevalent in other synchronous systems as they pursue a path of increasing renewable energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.