883 resultados para Laplace, Transformación de
Resumo:
The general time dependent source problem has been solved by the method of transforms (Laplace, Lebedev–Kontorovich in succession) and the solution is obtained in the form of an infinite series involving Legendre functions. The solutions in the case of harmonic time dependence and the incident plane wave have been derived from the above solution and are presented in the form of an infinite series. In the case of an incident plane wave, the series has been summed and the final solution involves an improper integral which behaves like a complementary error function for large values of the argument. Finally, the far field evaluation has been shown. The results are compared with those of Sommerfeld's half-plane diffraction problem with unmixed boundary conditions.
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.
Resumo:
We describe a Finite Difference Method for the determination of the electrostatic field in a multilayered electrooptic device. The Laplace equation is solved, assuming a suitable closed area, by taking into account the different permittivities of the various layers. The effect of a higher permittivity in the guiding layer has been explicitly considered. As a practical example, we calculate the phase shift of a guided optical wave within an electrooptic modulator. A review of the various methods in use for the field analysis is given. Some criteria for the selection of the appropriate method are also mentioned.
Resumo:
A new fault-tolerant multi-transputer architecture capable of tolerating failure of any one component in the system is described. In the proposed architecture the processing nodes are automatically reconfigured in the event of a fault and the computations continue from the stage where the fault occurred. The process of reconfiguration is transparent to the user, and the identity of the failed component is communicated to the user along with the results of computations. Parallel solution of a typical engineering problem involving solution of Laplace's equation by the boundary element method has been implemented. The performance of the architecture in the event of faults has been investigated.
Resumo:
Various aspects of coherent states of nonlinear su(2) and su(1,1) algebras are studied. It is shown that the nonlinear su(1,1) Barut-Girardello and Perelomov coherent states are related by a Laplace transform. We then concentrate on the derivation and analysis of the statistical and geometrical properties of these states. The Berry's phase for the nonlinear coherent states is also derived. (C) 2010 American Institute of Physics. doi:10.1063/1.3514118]
Resumo:
Capacitive-resistive transients in extended media are discussed in tenns of electric field quantities. Obviously, in rhese problems, the contribution of the magnetlc field to the electric field is deemed negligible. For a simple lllusfratlve example, the field solution is compared with the circuit-theoretical resuit for the voltage and current. An algorithm for solving such transients in space and time doman with the help of a Laplace solver is presented. Any other Laplace solver can also be used far this purpose. Its applicability is demonstrated with three examples, one of which is chosen to have a circuit-theoretical solution.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.
Resumo:
The subject of transients in polyphase induction motors and synchronous machines has been studied in very great detail by several investigators, but no published literature exists dealing exclusively with the analysis of the problem of transients in single-phase induction motors. This particular problem has been studied in this paper by applying the Laplace transform. The results of actual computation of the currents and developed electrical torque are compared with the data obtained by setting up the integro-differential equations of the machine on an electronic differential analyzer. It is shown that if the motor is switched on to the supply when the potential passes through its zero value, there is a pulsating fundamental frequency torque superimposed on the average steady-state unidirectional torque. If, on the other hand, the switch is closed when the applied potential passes through its maximum value, the developed electrical torque settles down to its final steady-state value during the first cycle of the supply voltage.
Resumo:
We study the distribution of first passage time for Levy type anomalous diffusion. A fractional Fokker-Planck equation framework is introduced.For the zero drift case, using fractional calculus an explicit analytic solution for the first passage time density function in terms of Fox or H-functions is given. The asymptotic behaviour of the density function is discussed. For the nonzero drift case, we obtain an expression for the Laplace transform of the first passage time density function, from which the mean first passage time and variance are derived.
Resumo:
A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.