939 resultados para Land use and cover change
Resumo:
We present a new method for ecologically sustainable land use planning within multiple land use schemes. Our aims were (1) to develop a method that can be used to locate important areas based on their ecological values; (2) to evaluate the quality, quantity, availability, and usability of existing ecological data sets; and (3) to demonstrate the use of the method in Eastern Finland, where there are requirements for the simultaneous development of nature conservation, tourism, and recreation. We compiled all available ecological data sets from the study area, complemented the missing data using habitat suitability modeling, calculated the total ecological score (TES) for each 1 ha grid cell in the study area, and finally, demonstrated the use of TES in assessing the success of nature conservation in covering ecologically valuable areas and locating ecologically sustainable areas for tourism and recreational infrastructure. The method operated quite well at the level required for regional and local scale planning. The quality, quantity, availability, and usability of existing data sets were generally high, and they could be further complemented by modeling. There are still constraints that limit the use of the method in practical land use planning. However, as increasing data become available and open access, and modeling tools improve, the usability and applicability of the method will increase.
Resumo:
Le rapide déclin actuel de la biodiversité est inquiétant et les activités humaines en sont la cause directe. De nombreuses aires protégées ont été mises en place pour contrer cette perte de biodiversité. Afin de maximiser leur efficacité, l’amélioration de la connectivité fonctionnelle entre elles est requise. Les changements climatiques perturbent actuellement les conditions environnementales de façon globale. C’est une menace pour la biodiversité qui n’a pas souvent été intégrée lors de la mise en place des aires protégées, jusqu’à récemment. Le mouvement des espèces, et donc la connectivité fonctionnelle du paysage, est impacté par les changements climatiques et des études ont montré qu’améliorer la connectivité fonctionnelle entre les aires protégées aiderait les espèces à faire face aux impacts des changements climatiques. Ma thèse présente une méthode pour concevoir des réseaux d’aires protégées tout en tenant compte des changements climatiques et de la connectivité fonctionnelle. Mon aire d’étude est la région de la Gaspésie au Québec (Canada). La population en voie de disparition de caribou de la Gaspésie-Atlantique (Rangifer tarandus caribou) a été utilisée comme espèce focale pour définir la connectivité fonctionnelle. Cette petite population subit un déclin continu dû à la prédation et la modification de son habitat, et les changements climatiques pourraient devenir une menace supplémentaire. J’ai d’abord construit un modèle individu-centré spatialement explicite pour expliquer et simuler le mouvement du caribou. J’ai utilisé les données VHF éparses de la population de caribou et une stratégie de modélisation patron-orienté pour paramétrer et sélectionner la meilleure hypothèse de mouvement. Mon meilleur modèle a reproduit la plupart des patrons de mouvement définis avec les données observées. Ce modèle fournit une meilleure compréhension des moteurs du mouvement du caribou de la Gaspésie-Atlantique, ainsi qu’une estimation spatiale de son utilisation du paysage dans la région. J’ai conclu que les données éparses étaient suffisantes pour ajuster un modèle individu-centré lorsqu’utilisé avec une modélisation patron-orienté. Ensuite, j’ai estimé l’impact des changements climatiques et de différentes actions de conservation sur le potentiel de mouvement du caribou. J’ai utilisé le modèle individu-centré pour simuler le mouvement du caribou dans des paysages hypothétiques représentant différents scénarios de changements climatiques et d’actions de conservation. Les actions de conservation représentaient la mise en place de nouvelles aires protégées en Gaspésie, comme définies par le scénario proposé par le gouvernement du Québec, ainsi que la restauration de routes secondaires à l’intérieur des aires protégées. Les impacts des changements climatiques sur la végétation, comme définis dans mes scénarios, ont réduit le potentiel de mouvement du caribou. La restauration des routes était capable d’atténuer ces effets négatifs, contrairement à la mise en place des nouvelles aires protégées. Enfin, j’ai présenté une méthode pour concevoir des réseaux d’aires protégées efficaces et j’ai proposé des nouvelles aires protégées à mettre en place en Gaspésie afin de protéger la biodiversité sur le long terme. J’ai créé de nombreux scénarios de réseaux d’aires protégées en étendant le réseau actuel pour protéger 12% du territoire. J’ai calculé la représentativité écologique et deux mesures de connectivité fonctionnelle sur le long terme pour chaque réseau. Les mesures de connectivité fonctionnelle représentaient l’accès général aux aires protégées pour le caribou de la Gaspésie-Atlantique ainsi que son potentiel de mouvement à l’intérieur. J’ai utilisé les estimations de potentiel de mouvement pour la période de temps actuelle ainsi que pour le futur sous différents scénarios de changements climatiques pour représenter la connectivité fonctionnelle sur le long terme. Le réseau d’aires protégées que j’ai proposé était le scénario qui maximisait le compromis entre les trois caractéristiques de réseau calculées. Dans cette thèse, j’ai expliqué et prédit le mouvement du caribou de la Gaspésie-Atlantique sous différentes conditions environnementales, notamment des paysages impactés par les changements climatiques. Ces résultats m’ont aidée à définir un réseau d’aires protégées à mettre en place en Gaspésie pour protéger le caribou au cours du temps. Je crois que cette thèse apporte de nouvelles connaissances sur le comportement de mouvement du caribou de la Gaspésie-Atlantique, ainsi que sur les actions de conservation qui peuvent être prises en Gaspésie afin d’améliorer la protection du caribou et de celle d’autres espèces. Je crois que la méthode présentée peut être applicable à d’autres écosystèmes aux caractéristiques et besoins similaires.
Resumo:
Perturbation of natural ecosystems, namely by increasing freshwater use and its degradative use, as well as topsoil erosion by water of land-use production systems, have been emerging as topics of high environmental concern. Freshwater use has become a focus of attention in the last few years for all stakeholders involved in the production of goods, mainly agro-industrial and forest-based products, which are freshwater-intensive consumers, requiring large inputs of green and blue water. This thesis presents a global review on the available Water Footprint Assessment and Life Cycle Assessment (LCA)-based methods for measuring and assessing the environmental relevance of freshwater resources use, based on a life cycle perspective. Using some of the available midpoint LCA-based methods, the freshwater use-related impacts of a Portuguese wine (white ‘vinho verde’) were assessed. However, the relevance of environmental green water has been neglected because of the absence of a comprehensive impact assessment method associated with green water flows. To overcome this constraint, this thesis helps to improve and enhance the LCA-based methods by providing a midpoint and spatially explicit Life Cycle Impact Assessment (LCIA) method for assessing impacts on terrestrial green water flow and addressing reductions in surface blue water production caused by reductions in surface runoff due to land-use production systems. The applicability of the proposed method is illustrated by a case study on Eucalyptus globulus conducted in Portugal, as the growth of short rotation forestry is largely dependent on local precipitation. Topsoil erosion by water has been characterised as one of the most upsetting problems for rivers. Because of this, this thesis also focuses on the ecosystem impacts caused by suspended solids (SS) from topsoil erosion that reach freshwater systems. A framework to conduct a spatially distributed SS delivery to freshwater streams and a fate and effect LCIA method to derive site-specific characterisation factors (CFs) for endpoint damage on aquatic ecosystem diversity, namely on algae, macrophyte, and macroinvertebrates organisms, were developed. The applicability of this framework, combined with the derived site-specific CFs, is shown by conducting a case study on E. globulus stands located in Portugal as an example of a land use based system. A spatially explicit LCA assessment was shown to be necessary, since the impacts associated with both green water flows and SS vary greatly as a function of spatial location.
Resumo:
Practitioners of the performance form “InterPlay” utilize dance, storytelling and song to build community and generate social change. I elucidate how this community of practitioners conceptualizes “social change.” I argue that the InterPlay social movement organizes around the application of play to performances of self in everyday life. I explore how the InterPlay non-profit corporation, Body Wisdom Inc., employs this technique to address racial justice in its organizational practices. I also examine how practitioners understand their use of this performance play in places of work, concluding that—even in these endeavors—they see social change as a process immanent to both individual people and the systems they create, not as the intervention of an autonomous external power. Ultimately, I argue that, within late capitalism, play should no longer be conceptualized as an activity separate from everyday sociality but as an immanent process of change constitutive of a socioaesthetic domain.
Resumo:
Today the Ria de Aveiro of northern Portugal has a hydromorphological regime in which river influence is limited to periods of flood. For most of the annual cycle, tidal currents and wind waves are the major forcing agents in this complex coastal lagoon–estuarine system. The system has evolved over two centuries from one that was naturally fluvially dominant to one that is today tidally dominant. Human influence was a trigger for these changes, starting in 1808 when its natural evolution was halted by the construction of a new inlet/outlet channel through the mobile sand spit that isolates it from the Atlantic Ocean. In consequence, tidal ranges in the lagoon increased rapidly from ~0.1 m to >1 m and continued to increase, as a result of continued engineering works and dredging, today reaching ~3 m on spring tides. Hydromorphological adjustments that have taken place include the deepening of channels, an increase in the area of inter-tidal flats, regression of salt marsh, increased tidal propagation and increased saline intrusion. Loss of once abundant submerged aquatic vegetation (SAV), due to increased tidal flows, exacerbated by increased recreational activities, has been accompanied by a change from fine cohesive sediments to coarser, mobile sediments with reduced biological activity.
Resumo:
O fogo é um processo frequente nas paisagens do norte de Portugal. Estudos anteriores mostraram que os bosques de azinheira (Quercus rotundifolia) persistem após a passagem do fogo e ajudam a diminuir a sua intensidade e taxa de propagação. Os principais objetivos deste estudo foram compreender e modelar o efeito dos bosques de azinheira no comportamento do fogo ao nível da paisagem da bacia superior do rio Sabor, localizado no nordeste de Portugal. O impacto dos bosques de azinheira no comportamento do fogo foi testado em termos de área e configuração de acordo com cenários que simulam a possível distribuição destas unidades de vegetação na paisagem, considerando uma percentagem de ocupação da azinheira de 2.2% (Low), 18.1% (Moderate), 26.0% (High), e 39.8% (Rivers). Estes cenários tiveram como principal objetivo testar 1) o papel dos bosques de azinheira no comportamento do fogo e 2) de que forma a configuração das manchas de azinheira podem ajudar a diminuir a intensidade da linha de fogo e área ardida. Na modelação do comportamento do fogo foi usado o modelo FlamMap para simular a intensidade de linha do fogo e taxa de propagação do fogo com base em modelos de combustível associados a cada ocupação e uso do solo presente na área de estudo, e também com base em fatores topográficos (altitude, declive e orientação da encosta) e climáticos (humidade e velocidade do vento). Foram ainda usados dois modelos de combustível para a ocupação de azinheira (áreas interiores e de bordadura), desenvolvidos com base em dados reais obtidos na região. Usou-se o software FRAGSATS para a análise dos padrões espaciais das classes de intensidade de linha do fogo, usando-se as métricas Class Area (CA), Number of Patches (NP) e Large Patches Index (LPI). Os resultados obtidos indicaram que a intensidade da linha de fogo e a taxa de propagação do fogo variou entre cenários e entre modelos de combustível para o azinhal. A intensidade média da linha de fogo e a taxa média de propagação do fogo decresceu à medida que a percentagem de área de bosques de azinheira aumentou na paisagem. Também foi observado que as métricas CA, NP e LPI variaram entre cenários e modelos de combustível para o azinhal, decrescendo quando a percentagem de área de bosques de azinheira aumentou. Este estudo permitiu concluir que a variação da percentagem de ocupação e configuração espacial dos bosques de azinheira influenciam o comportamento do fogo, reduzindo, em termos médios, a intensidade da linha de fogo e a taxa de propagação, sugerindo que os bosques de azinhal podem ser usados como medidas silvícolas preventivas para diminuir o risco de incêndio nesta região.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Programa de Pós-Graduação em Tecnologia Ambiental e Recursos Hídricos, 2015.
Resumo:
This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional $1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by $2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.
Resumo:
Although mitigating GHG emissions is necessary to reduce the overall negative climate change impacts on crop yields and agricultural production, certain mitigation measures may generate unintended consequences to food availability and access due to land use competition and economic burden of mitigation. Prior studies have examined the co-impacts on food availability and global producer prices caused by alternative climate policies. More recent studies have looked at the reduction in total caloric intake driven by both changing income and changing food prices under one specific climate policy. However, due to inelastic calorie demand, consumers’ well-being are likely further reduced by increased food expenditures. Built upon existing literature, my dissertation explores how alternative climate policy designs might adversely affect both caloric intake and staple food budget share to 2050, by using the Global Change Assessment Model (GCAM) and a post-estimated metric of food availability and access (FAA). My dissertation first develop a set of new metrics and methods to explore new perspectives of food availability and access under new conditions. The FAA metric consists of two components, the fraction of GDP per capita spent on five categories of staple food and total caloric intake relative to a reference level. By testing the metric against alternate expectations of the future, it shows consistent results with previous studies that economic growth dominates the improvement of FAA. As we increase our ambition to achieve stringent climate targets, two policy conditions tend to have large impacts on FAA driven by competing land use and increasing food prices. Strict conservation policies leave the competition between bioenergy and agriculture production on existing commercial land, while pricing terrestrial carbon encourages large-scale afforestation. To avoid unintended outcomes to food availability and access for the poor, pricing land emissions in frontier forests has the advantage of selecting more productive land for agricultural activities compared to the full conservation approach, but the land carbon price should not be linked to the price of energy system emissions. These results are highly relevant to effective policy-making to reduce land use change emissions, such as the Reduced Emissions from Deforestation and Forest Degradation (REDD).
Resumo:
Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.
Resumo:
The purpose of this research is to examine the role of the mining company office in the management of the copper industry in Michigan’s Keweenaw Peninsula between 1901 and 1946. Two of the largest and most influential companies were examined – the Calumet & Hecla Mining Company and the Quincy Mining Company. Both companies operated for more than forty years under general managers who were arguably the most influential people in the management of each company. James MacNaughton, general manager at Calumet and Hecla, worked from 1901 through 1941; Charles Lawton, general manager at Quincy Mining Company, worked from 1905 through 1946. In this case, both of these managers were college-educated engineers and adopted scientific management techniques to operate their respective companies. This research focused on two main goals. The first goal of this project was to address the managerial changes in Michigan’s copper mining offices of the early twentieth century. This included the work of MacNaughton and Lawton, along with analysis of the office structures themselves and what changes occurred through time. The second goal of the project was to create a prototype virtual exhibit for use at the Quincy Mining Company office. A virtual exhibit will allow visitors the opportunity to visit the office virtually, experiencing the office as an office worker would have in the early twentieth century. To meet both goals, this project used various research materials, including archival sources, oral histories, and material culture to recreate the history of mining company management in the Copper Country.
Resumo:
The purpose of this study is to examine the importance of the wild edible weed tasba (Senna obtusifolia) in Sanguéré Paul, Cameroon by examining how households use and manage the plant. This study found that local management of tasba is minimal compared to other traditional vegetables. Tasba was collected most frequently from en brousse or the communal, fallowed land which is often too degraded for traditional field crops to grow. Women subsistence farmers were closely involved with tasba as they are the ones responsible for food production within the family. Socioeconomic differences between women affects how they manage tasba and other vegetables to form a livelihood strategy to achieve food security within the family. Modifications and changes in management and use of tasba are influenced by time, proximity and income based on her perspective, preferences and resources available. Overall, tasba is an integral part of the traditional food system in Sanguéré Paul, and can play a role in the uncertain ecological and social setting of northern Cameroon.
Resumo:
In this paper, we propose climate adaptation solutions for the green sectors in three different zones of MENA: Egypt’s Delta (irrigated), Karak, in the highlands of Jordan (rainfed), and Lebanon’s Orontes basin (mixed: rainfed-irrigated). We analysed land use and crop intensification, and calculated the economic productivity of water – a critical scarce resource in MENA. By integrating the results with evidence from literature on the potential impacts of climate change and socio-economic factors, we could identify vulnerability levels of the three regions and propose adaptation measures relying of the concept of the “food-water-energy nexus.” While the vulnerability levels are found to be high in the Delta (Egypt) and Karak (Jordan), mainly due to water scarcity and poor adaptive capacity, the vulnerability level is moderate in the Orontes zone (Lebanon) due to a diversified agricultural sector and good market development, coupled with moderate water scarcity. Proposed adaptation solutions range from measures to improve technical efficiency, to measures that encourage economically efficient allocation by use of market forces. For both cases, the development of market opportunities is emphasized to make the proposed measures attractive to farmers.
Resumo:
Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal.
Resumo:
Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.