941 resultados para Land Use Planning|Civil engineering|Transportation planning
Resumo:
This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI). We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).
Resumo:
As the world population continues to grow past seven billion people and global challenges continue to persist including resource availability, biodiversity loss, climate change and human well-being, a new science is required that can address the integrated nature of these challenges and the multiple scales on which they are manifest. Sustainability science has emerged to fill this role. In the fifteen years since it was first called for in the pages of Science, it has rapidly matured, however its place in the history of science and the way it is practiced today must be continually evaluated. In Part I, two chapters address this theoretical and practical grounding. Part II transitions to the applied practice of sustainability science in addressing the urban heat island (UHI) challenge wherein the climate of urban areas are warmer than their surrounding rural environs. The UHI has become increasingly important within the study of earth sciences given the increased focus on climate change and as the balance of humans now live in urban areas.
In Chapter 2 a novel contribution to the historical context of sustainability is argued. Sustainability as a concept characterizing the relationship between humans and nature emerged in the mid to late 20th century as a response to findings used to also characterize the Anthropocene. Emerging from the human-nature relationships that came before it, evidence is provided that suggests Sustainability was enabled by technology and a reorientation of world-view and is unique in its global boundary, systematic approach and ambition for both well being and the continued availability of resources and Earth system function. Sustainability is further an ambition that has wide appeal, making it one of the first normative concepts of the Anthropocene.
Despite its widespread emergence and adoption, sustainability science continues to suffer from definitional ambiguity within the academe. In Chapter 3, a review of efforts to provide direction and structure to the science reveals a continuum of approaches anchored at either end by differing visions of how the science interfaces with practice (solutions). At one end, basic science of societally defined problems informs decisions about possible solutions and their application. At the other end, applied research directly affects the options available to decision makers. While clear from the literature, survey data further suggests that the dichotomy does not appear to be as apparent in the minds of practitioners.
In Chapter 4, the UHI is first addressed at the synoptic, mesoscale. Urban climate is the most immediate manifestation of the warming global climate for the majority of people on earth. Nearly half of those people live in small to medium sized cities, an understudied scale in urban climate research. Widespread characterization would be useful to decision makers in planning and design. Using a multi-method approach, the mesoscale UHI in the study region is characterized and the secular trend over the last sixty years evaluated. Under isolated ideal conditions the findings indicate a UHI of 5.3 ± 0.97 °C to be present in the study area, the magnitude of which is growing over time.
Although urban heat islands (UHI) are well studied, there remain no panaceas for local scale mitigation and adaptation methods, therefore continued attention to characterization of the phenomenon in urban centers of different scales around the globe is required. In Chapter 5, a local scale analysis of the canopy layer and surface UHI in a medium sized city in North Carolina, USA is conducted using multiple methods including stationary urban sensors, mobile transects and remote sensing. Focusing on the ideal conditions for UHI development during an anticyclonic summer heat event, the study observes a range of UHI intensity depending on the method of observation: 8.7 °C from the stationary urban sensors; 6.9 °C from mobile transects; and, 2.2 °C from remote sensing. Additional attention is paid to the diurnal dynamics of the UHI and its correlation with vegetation indices, dewpoint and albedo. Evapotranspiration is shown to drive dynamics in the study region.
Finally, recognizing that a bridge must be established between the physical science community studying the Urban Heat Island (UHI) effect, and the planning community and decision makers implementing urban form and development policies, Chapter 6 evaluates multiple urban form characterization methods. Methods evaluated include local climate zones (LCZ), national land cover database (NCLD) classes and urban cluster analysis (UCA) to determine their utility in describing the distribution of the UHI based on three standard observation types 1) fixed urban temperature sensors, 2) mobile transects and, 3) remote sensing. Bivariate, regression and ANOVA tests are used to conduct the analyses. Findings indicate that the NLCD classes are best correlated to the UHI intensity and distribution in the study area. Further, while the UCA method is not useful directly, the variables included in the method are predictive based on regression analysis so the potential for better model design exists. Land cover variables including albedo, impervious surface fraction and pervious surface fraction are found to dominate the distribution of the UHI in the study area regardless of observation method.
Chapter 7 provides a summary of findings, and offers a brief analysis of their implications for both the scientific discourse generally, and the study area specifically. In general, the work undertaken does not achieve the full ambition of sustainability science, additional work is required to translate findings to practice and more fully evaluate adoption. The implications for planning and development in the local region are addressed in the context of a major light-rail infrastructure project including several systems level considerations like human health and development. Finally, several avenues for future work are outlined. Within the theoretical development of sustainability science, these pathways include more robust evaluations of the theoretical and actual practice. Within the UHI context, these include development of an integrated urban form characterization model, application of study methodology in other geographic areas and at different scales, and use of novel experimental methods including distributed sensor networks and citizen science.
Resumo:
Protecting public health is the most legitimate use of zoning, and yet there is minimal progress in applying it to the obesity problem. Zoning could potentially be used to address both unhealthy and healthy food retailers, but lack of evidence regarding the impact of zoning and public opinion on zoning changes are barriers to implementing zoning restrictions on fast food on a larger scale. My dissertation addresses these gaps in our understanding of health zoning as a policy option for altering built, food environments.
Chapter 1 examines the relationship between food swamps and obesity and whether spatial mapping might be useful in identifying priority geographic areas for zoning interventions. I employ an instrumental variables (IV) strategy to correct for the endogeneity problems associated with food environments, namely that individuals may self-select into certain neighborhoods and may consider food availability in their decision process. I utilize highway exits as a source of exogenous variation .Using secondary data from the USDA Food Environment Atlas, ordinary least squares (OLS) and IV regression models were employed to analyze cross-sectional associations between local food environments and the prevalence of obesity. I find even after controlling for food desert effects, food swamps have a positive, statistically significant effect on adult obesity rates.
Chapter 2 applies theories of message framing and prospect theory to the emerging discussion around health zoning policies targeting food environments and to explore public opinion toward a list of potential zoning restrictions on fast-food restaurants (beyond moratoriums on new establishments). In order to explore causality, I employ an online survey experiment manipulating exposure to vignettes with different message frames about health zoning restrictions with two national samples of adult Americans age 18 and over (N1=2,768 and N2=3,236). The second sample oversamples Black Americans (N=1,000) and individuals with high school as their highest level of education. Respondents were randomly assigned to one of six conditions where they were primed with different message frames about the benefits of zoning restrictions on fast food retailers. Participants were then asked to indicate their support for six zoning policies on a Likert scale. Subjects also answered questions about their food store access, eating behaviors, health status and perceptions of food stores by type.
I find that a message frame about Nutrition and increasing Equity in the food system was particularly effective at increasing support for health zoning policies targeting fast food outlets across policy categories (Conditional, Youth-related, Performance and Incentive) and across racial groups. This finding is consistent with an influential environmental justice scholar’s description of “injustice frames” as effective in mobilizing supporters around environmental issues (Taylor 2000). I extend this rationale to food environment obesity prevention efforts and identify Nutrition combined with Equity frames as an arguably universal campaign strategy for bolstering public support of zoning restrictions on fast food retailers.
Bridging my findings from both Chapters 1 and 2, using food swamps as a spatial metaphor may work to identify priority areas for policy intervention, but only if there is an equitable distribution of resources and mobilization efforts to improve consumer food environments. If the structural forces which ration access to land-use planning persist (arguably including the media as gatekeepers to information and producers of message frames) disparities in obesity are likely to widen.
Resumo:
South Florida continues to become increasingly developed and urbanized. My exploratory study examines connections between land use and water quality. The main objectives of the project were to develop an understanding of how land use has affected water quality in Miami-Dade canals, and an economic optimization model to estimate the costs of best management practices necessary to improve water quality. Results indicate Miami-Dade County land use and water quality are correlated. Through statistical factor and cluster analysis, it is apparent that agricultural areas are associated with higher concentrations of nitrogen, while urban areas commonly have higher levels of phosphorous than agricultural areas. The economic optimization model shows that urban areas can improve water quality by lowering fertilizer inputs. Agricultural areas can also implement methods to improve water quality although it may be more expensive than urban areas. It is important to keep solutions in mind when looking towards future water quality improvements in South Florida.
Resumo:
This data set contains the inputs and the results of the REDD+ Policy Assessment Centre project (REDD-PAC) project (http://www.redd-pac.org), developed by a consortium of research institutes (IIASA, INPE, IPEA, UNEP-WCMC), supported by Germany's International Climate Initiative. Taking a new land use map of Brazil for 2000 as input, the research team used the global economic model GLOBIOM to project land use changes in Brazil up to 2050. Model projections show that Brazil has the potential to balance its goals of protecting the environment and becoming a major global producer of food and biofuels. The model results were taken into account by Brazilian decision-makers when developing the country's intended nationally determined contribution (INDC).
Resumo:
Landnutzungsänderungen sind eine wesentliche Ursache von Treibhausgasemissionen. Die Umwandlung von Ökosystemen mit permanenter natürlicher Vegetation hin zu Ackerbau mit zeitweise vegetationslosem Boden (z.B. nach der Bodenbearbeitung vor der Aussaat) führt häufig zu gesteigerten Treibhausgasemissionen und verminderter Kohlenstoffbindung. Weltweit dehnt sich Ackerbau sowohl in kleinbäuerlichen als auch in agro-industriellen Systemen aus, häufig in benachbarte semiaride bis subhumide Rangeland Ökosysteme. Die vorliegende Arbeit untersucht Trends der Landnutzungsänderung im Borana Rangeland Südäthiopiens. Bevölkerungswachstum, Landprivatisierung und damit einhergehende Einzäunung, veränderte Landnutzungspolitik und zunehmende Klimavariabilität führen zu raschen Veränderungen der traditionell auf Tierhaltung basierten, pastoralen Systeme. Mittels einer Literaturanalyse von Fallstudien in ostafrikanischen Rangelands wurde im Rahmen dieser Studie ein schematisches Modell der Zusammenhänge von Landnutzung, Treibhausgasemissionen und Kohlenstofffixierung entwickelt. Anhand von Satellitendaten und Daten aus Haushaltsbefragungen wurden Art und Umfang von Landnutzungsänderungen und Vegetationsveränderungen an fünf Untersuchungsstandorten (Darito/Yabelo Distrikt, Soda, Samaro, Haralo, Did Mega/alle Dire Distrikt) zwischen 1985 und 2011 analysiert. In Darito dehnte sich die Ackerbaufläche um 12% aus, überwiegend auf Kosten von Buschland. An den übrigen Standorten blieb die Ackerbaufläche relativ konstant, jedoch nahm Graslandvegetation um zwischen 16 und 28% zu, während Buschland um zwischen 23 und 31% abnahm. Lediglich am Standort Haralo nahm auch „bare land“, vegetationslose Flächen, um 13% zu. Faktoren, die zur Ausdehnung des Ackerbaus führen, wurden am Standort Darito detaillierter untersucht. GPS Daten und anbaugeschichtlichen Daten von 108 Feldern auf 54 Betrieben wurden in einem Geographischen Informationssystem (GIS) mit thematischen Boden-, Niederschlags-, und Hangneigungskarten sowie einem Digitales Höhenmodell überlagert. Multiple lineare Regression ermittelte Hangneigung und geographische Höhe als signifikante Erklärungsvariablen für die Ausdehnung von Ackerbau in niedrigere Lagen. Bodenart, Entfernung zum saisonalen Flusslauf und Niederschlag waren hingegen nicht signifikant. Das niedrige Bestimmtheitsmaß (R²=0,154) weist darauf hin, dass es weitere, hier nicht erfasste Erklärungsvariablen für die Richtung der räumlichen Ausweitung von Ackerland gibt. Streudiagramme zu Ackergröße und Anbaujahren in Relation zu geographischer Höhe zeigen seit dem Jahr 2000 eine Ausdehnung des Ackerbaus in Lagen unter 1620 müNN und eine Zunahme der Schlaggröße (>3ha). Die Analyse der phänologischen Entwicklung von Feldfrüchten im Jahresverlauf in Kombination mit Niederschlagsdaten und normalized difference vegetation index (NDVI) Zeitreihendaten dienten dazu, Zeitpunkte besonders hoher (Begrünung vor der Ernte) oder niedriger (nach der Bodenbearbeitung) Pflanzenbiomasse auf Ackerland zu identifizieren, um Ackerland und seine Ausdehnung von anderen Vegetationsformen fernerkundlich unterscheiden zu können. Anhand der NDVI Spektralprofile konnte Ackerland gut Wald, jedoch weniger gut von Gras- und Buschland unterschieden werden. Die geringe Auflösung (250m) der Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI Daten führte zu einem Mixed Pixel Effect, d.h. die Fläche eines Pixels beinhaltete häufig verschiedene Vegetationsformen in unterschiedlichen Anteilen, was deren Unterscheidung beeinträchtigte. Für die Entwicklung eines Echtzeit Monitoring Systems für die Ausdehnung des Ackerbaus wären höher auflösende NDVI Daten (z.B. Multispektralband, Hyperion EO-1 Sensor) notwendig, um kleinräumig eine bessere Differenzierung von Ackerland und natürlicher Rangeland-Vegetation zu erhalten. Die Entwicklung und der Einsatz solcher Methoden als Entscheidungshilfen für Land- und Ressourcennutzungsplanung könnte dazu beitragen, Produktions- und Entwicklungsziele der Borana Landnutzer mit nationalen Anstrengungen zur Eindämmung des Klimawandels durch Steigerung der Kohlenstofffixierung in Rangelands in Einklang zu bringen.
Resumo:
Transportation and land-use are independent, inter-active systems. Land-use patterns shape local transportation demand, but transportation systems in turn influence land-use patterns. In attempting to satisfy transportation demand created by existing land-use patterns, transportation planners directly, if not always consciously or intentionally, influence future land-use patterns. This study examines that complex relationship. The purpose of the study was threefold: to compile the body of knowledge already existing; to apply this body of knowledge to the context of midsize cities in the Midwest; and, to make the knowledge accessible both to transportation planners and to public officials who make key decisions about land use.
Resumo:
In 2013 the European Commission launched its new green infrastructure strategy to make another attempt to stop and possibly reverse the loss of biodiversity until 2020, by connecting habitats in the wider landscape. This means that conservation would go beyond current practices to include landscapes that are dominated by conventional agriculture, where biodiversity conservation plays a minor role at best. The green infrastructure strategy aims at bottom-up rather than top-down implementation, and suggests including local and regional stakeholders. Therefore, it is important to know which stakeholders influence land-use decisions concerning green infrastructure at the local and regional level. The research presented in this paper served to select stakeholders in preparation for a participatory scenario development process to analyze consequences of different implementation options of the European green infrastructure strategy. We used a mix of qualitative and quantitative social network analysis (SNA) methods to combine actors’ attributes, especially concerning their perceived influence, with structural and relational measures. Further, our analysis provides information on institutional backgrounds and governance settings for green infrastructure and agricultural policy. The investigation started with key informant interviews at the regional level in administrative units responsible for relevant policies and procedures such as regional planners, representatives of federal ministries, and continued at the local level with farmers and other members of the community. The analysis revealed the importance of information flows and regulations but also of social pressure, considerably influencing biodiversity governance with respect to green infrastructure and biodiversity.
Resumo:
We explore bioregional management in the Murray-Darling Basin (MDB) in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO), the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization–decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth Environmental Water Holder, can play a major role in securing and coordinating environmental water supplies.
Resumo:
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
Resumo:
The distribution of sources and sinks of carbon over the land surface is dominated by changes in land use such as deforestation, reforestation, and agricultural management. Despite, the importance of land-use change in dominating long-term net terrestrial fluxes of carbon, estimates of the annual flux are uncertain relative to other terms in the global carbon budget. The interaction of the nitrogen cycle via atmospheric N inputs and N limitation with the carbon cycle contributes to the uncertain effect of land use change on terrestrial carbon uptake. This study uses two different land use datasets to force the geographically explicit terrestrial carbon-nitrogen coupled component of the Integrated Science Assessment Model (ISAM) to examine the response of terrestrial carbon stocks to historical LCLUC (cropland, pastureland and wood harvest) while accounting for changes in N deposition, atmospheric CO2 and climate. One of the land use datasets is based on satellite data (SAGE) while the other uses population density maps (HYDE), which allows this study to investigate how global LCLUC data construction can affect model estimated emissions. The timeline chosen for this study starts before the Industrial Revolution in 1765 to the year 2000 because of the influence of rising population and economic development on regional LCLUC. Additionally, this study evaluates the impact that resulting secondary forests may have on terrestrial carbon uptake. The ISAM model simulations indicate that uncertainties in net terrestrial carbon fluxes during the 1990s are largely due to uncertainties in regional LCLUC data. Also results show that secondary forests increase the terrestrial carbon sink but secondary tropical forests carbon uptake are constrained due to nutrient limitation.
Resumo:
Résumé : L'organisation de l'espace basilien est le reflet culturel de ses habitants. Le paysage humanisé actuel est la résultante de divers artefacts culturels. Pour mieux comprendre l'occupation du sol basilien, il convient de percevoir le milieu physique et humain dans son ensemble, d'examiner à fond les séquences de l'établissement humain et d'identifier les déséquilibres spatiaux temporels qui compromettent l'évolution rationnelle du territoire. L'identification des contraintes et des potentiels du territoire favorise l'élaboration et la conceptualisation d'un plan d'aménagement du territoire équilibré, qui met en valeur l'intégrité de la composante culturelle basilienne. En outre, cette recherche tente d'élucider et de corriger certaines lacunes perceptibles dans le territoire de la municipalité de Saint-Basile.||Abstract : The built up area of Saint-Basile represents the cultural iconography of his inhabitants. Apparently, the cultural landscape is set up from former man made modifications. For a better understanding of the Saint-Basile urban land use, it is a must to perceive and recognize distincly the physical and the human factors abroad; to scrutinize the human settlements sequences since the colonization and to identify the internal land use patterns components who jeopardize the rational developpment of the community. The establishement and the identification of the restreints and the potentiels within the town of Saint-Basile will lead to a design and a better urban land use planning which will preserved the cultural identity of his inhabitants. Therefore, the research tends to light up and rectify some visibles linkages of the Saint-Basile urban land use.
Resumo:
Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.
Resumo:
Stakeholder participation is widely acknowledged as a critical component of post-disaster recovery because it helps create a shared understanding of local hazard risk and vulnerability, improves recovery and mitigation decision efficacy, and builds social capital and local resilience to future disasters. But approaches commonly used to facilitate participation and empower local communities depend on lengthy consensus-building processes which is not conducive to time-constrained post-disaster recovery. Moreover, these approaches are often criticized for being overly technocratic and ignoring existing community power and trust structures. Therefore, there is a need for more nuanced, analytical and applied research on stakeholder participation in planning for post-disaster recovery. This research examines participatory behavior of three stakeholder groups (government agencies, non-local non-government organizations, local community-based organizations) in three coastal village communities of Nagapattinam (India) that were recovering from the 2004 Indian Ocean tsunami. The study found eight different forms of participation and non-participation in the case study communities, ranging from 'transformative' participation to 'marginalized' non-participation. These forms of participation and non-participatory behavior emanated from the negotiation of four factors, namely stakeholder power, legitimacy, trust, and urgency for action. The study also found that the time constraints and changing conditions of recovery pose particular challenges for how these factors operated on the ground and over the course of recovery. Finally, the study uses these insights to suggest four strategies for recovery managers to use in the short- and long-term to facilitate more effective stakeholder participation in post-disaster recovery.
Resumo:
This thesis addresses contemporary gaps of vacancy within literature by using qualitative and quantitative methods and tools to determine the quantity, location, and interspatial relationships of vacant buildings and lots located in Baltimore Maryland. Spatial analyses were conducted to answer three questions of vacancy: 1) how many vacant lots and buildings exist, 2) whether there are spatial patterns of vacancy, such as clustering around geographic locations or within watersheds, and 3) how to prioritize intervention opportunities that respond to the city's larger issues? Using the city’s vacant lot and building data-sets, two concepts emerged from these investigations. First, Utilized Landscapes as a classification system that identifies lands that serve a function but have un-traditional qualities that make them susceptible to being labeled “vacant.” Second, the development of Transitional Zones, geographical areas with a high density of vacant buildings or lots that should be prioritized.