891 resultados para Lanczos, Linear systems, Generalized cross validation
Resumo:
Using the integral manifold approach, a composite control—the sum of a fast control and a slow control—is derived for a particular class of non-linear singularly perturbed systems. The fast control is designed completely at the outset, thus ensuring the stability of the fast transients of the system and, furthermore, the existence of the integral manifold. A new method is then presented which simplifies the derivation of a slow control such that the singularly perturbed system meets a preselected design objective to within some specified order of accuracy. Though this approach is, by its very nature, ad hoc, the underlying procedure is easily extended to more general classes of singularly perturbed systems by way of three examples.
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
This paper surveys numerical techniques for the regularization of descriptor (generalized state-space) systems by proportional and derivative feedback. We review generalizations of controllability and observability to descriptor systems along with definitions of regularity and index in terms of the Weierstraß canonical form. Three condensed forms display the controllability and observability properties of a descriptor system. The condensed forms are obtained through orthogonal equivalence transformations and rank decisions, so they may be computed by numerically stable algorithms. In addition, the condensed forms display whether a descriptor system is regularizable, i.e., when the system pencil can be made to be regular by derivative and/or proportional output feedback, and, if so, what index can be achieved. Also included is a a new characterization of descriptor systems that can be made to be regular with index 1 by proportional and derivative output feedback.
Resumo:
Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.
Resumo:
A characterization of observability for linear time-varying descriptor systemsE(t)x(t)+F(t)x(t)=B(t)u(t), y(t)=C(t)x(t) was recently developed. NeitherE norC were required to have constant rank. This paper defines a dual system, and a type of controllability so that observability of the original system is equivalent to controllability of the dual system. Criteria for observability and controllability are given in terms of arrays of derivatives of the original coefficients. In addition, the duality results of this paper lead to an improvement on a previous fundamental structure result for solvable systems of the formE(t)x(t)+F(t)x(t)=f(tt).
Resumo:
The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.
Resumo:
This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.
Resumo:
Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.