903 resultados para LOW COST AIRLINES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the design and development of a novel low-cost, non-invasive type sensor suitable for human breath sensing is reported. It can be used to detect respiratory disorders like bronchial asthma by analyzing the recorded breathing pattern. Though there are devices like spirometer to diagnose asthma, they are very inconvenient for patient's use because patients are made to exhale air through mouth forcefully. Presently developed sensor will overcome this limitation and is helpful in the diagnosis of respiratory related abnormalities. Polyvinylidene fluoride (PVDF) film in cantilever configuration is used as a sensing element to form the breath sensor. Two identical sensors are mounted on a spectacle frame, such that the tidal flow of inhaled and exhale air will impinge on sensor, for sensing the breathing patterns. These patterns are recorded, filtered, analyzed and displayed using CRO. Further the sensor is calibrated using a U-tube water manometer. The added advantage of piezoelectric type sensing element is that it is self powered without the need of any external power source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Space vector based PWM strategies for three-level inverters have a broader choice of switching sequences to generate the required reference vector than triangle comparison based PWM techniques. However, space vector based PWM involves numerous steps which are computationally intensive. A simplified algorithm is proposed here, which is shown to reduce the computation time significantly. The developed algorithm is used to implement synchronous and asynchronous conventional space vector PWM, synchronized modified space vector PWM and an asynchronous advanced bus-clamping PWM technique on a low-cost dsPIC digital controller. Experimental results are presented for a comparative evaluation of the performance of different PWM methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be similar to 1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4795779]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low cost eco-friendly method for the synthesis of gold nanoparticles (AuNPs) using guar gum (GG) as a reducing agent is reported. The nanoparticles obtained are characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on these results, a potential mechanism for this method of AuNPs synthesis is discussed. GG/AuNPs nanocomposite (GG/AuNPs NC) was exploited for optical sensor for detection of aqueous ammonia based on surface plasmon resonance (SPR). It was found to have good reproducibility, response times of similar to 10 s and excellent sensitivity with a detection limit of 1 ppb (parts-per-billion). This system allows the rapid production of an ultra-low-cost GG/AuNPs NC-based aqueous ammonia sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro- and nano-mechanical resonators have been proposed for a variety of applications ranging from mass sensing to signal processing. Often their actuation and/or detection involve external subsystems that are much larger than the resonator itself. We have designed a simple microcantilever resonator with integrated sensor and actuator, facilitating the integration of large arrays of resonators. This unique design can be manufactured with a low-cost fabrication process, involving just a single step of lithography. The bilayer cantilever of gold and silicon dioxide is used as piezoresistive sensor as well as thermal bimorph actuator. The ac current used for actuation and the dc current used for piezoresistive detection are separated in the frequency-domain using a bias-tee circuit configuration. The resonant response is measured by detecting the second harmonic of the actuation current using a lock-in amplifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed SmartConnect, a tool that addresses the growing need for the design and deployment of multihop wireless relay networks for connecting sensors to a control center. Given the locations of the sensors, the traffic that each sensor generates, the quality of service (QoS) requirements, and the potential locations at which relays can be placed, SmartConnect helps design and deploy a low-cost wireless multihop relay network. SmartConnect adopts a field interactive, iterative approach, with model based network design, field evaluation and relay augmentation performed iteratively until the desired QoS is met. The design process is based on approximate combinatorial optimization algorithms. In the paper, we provide the design choices made in SmartConnect and describe the experimental work that led to these choices. Finally, we provide results from some experimental deployments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of simple functionalization methods to attach biomolecules such as proteins and DNA on inexpensive substrates is important for widespread use of low cost, disposable biosensors. Here, we describe a method based on polyelectrolyte multilayers to attach single stranded DNA molecules to conventional glass slides as well as a completely non-standard substrate, namely flexible plastic transparency sheets. We then use the functionalized transparency sheets to specifically detect single stranded Hepatitis B DNA sequences from samples. We also demonstrate a blocking method for reducing non-specific binding of target DNA sequences using negatively charged polyelectrolyte molecules. The polyelectrolyte based functionalization method, which relies on surface charge as opposed to covalent surface linkages, could be an attractive platform to develop assays on inexpensive substrates for low cost biosensing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low cost, reagent free, Escherichia coli sensor is demonstrated with graphene, on transparent flexible acetate substrate. Graphene is grown on 100 mu m thick Cu foil, using CVD process and subsequently transferred on to a flexible acetate substrate. Gold electrodes are deposited on graphene to form a two terminal, interdigitated capacitor structure. Impedance spectroscopy (10 Hz to 100 kHz) is performed to characterize the change in impedance, as a function of E. coli concentration on graphene surface. The residual methyl groups on graphene, resulting from the transfer process, act as binding sites for E. coli. It has been observed that the resistance of graphene decreases with increasing E. coli concentration. This is due to the increased hole doping induced by negatively charged E. coli. A sensitivity of 60% is achieved for an E. coli concentration of 4.5 x 10(7) cfu/ml. An equivalent RC model is proposed to explain the sensing mechanism. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design and development of a Bottom Pressure Recorder for a Tsunami Early Warning System is described here. The special requirements that it should satisfy for the specific application of deployment at ocean bed and pressure monitoring of the water column above are dealt with. A high-resolution data digitization and low circuit power consumption are typical ones. The implementation details of the data sensing and acquisition part to meet these are also brought out. The data processing part typically encompasses a Tsunami detection algorithm that should detect an event of significance in the background of a variety of periodic and aperiodic noise signals. Such an algorithm and its simulation are presented. Further, the results of sea trials carried out on the system off the Chennai coast are presented. The high quality and fidelity of the data prove that the system design is robust despite its low cost and with suitable augmentations, is ready for a full-fledged deployment at ocean bed. (C) 2013 Elsevier Ltd. All rights reserved.