986 resultados para LABORATORY-REARED LARVAE
Resumo:
Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 mu g MC- LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination.
Resumo:
The persistence time and risk of microcystin-RR (MC-RR) in cropland via irrigation were investigated under laboratory conditions. In order to evaluate the efficiency of the potential adsorption and biodegradation of MC-RR in cropland and the persistence time of MC-RR for crop irrigation, high performance liquid chromatography (HPLC) was used to quantify the amount of MC-RR in solutions. Our study indicated that MC-RR could be adsorbed and biodegraded in cropland soils. MC-RR at 6.5 mg/L could be completely degraded within 6 days with a lag phase of 1 - 2 days. In the presence of humic acid, the same amount of MC-RR could be degraded within 4 days without a lag phase. Accordingly, the persistence time of MC-RR in cropland soils should be about 6 days. This result also suggested the beneficial effects of the organic fertilizer utilization for the biodegradation of MC-RR in cropland soils. Our studies also demonstrated that MC-RR at low concentration (< 10 mu g/L) could accelerate the growth of plants, while high concentration of MC-RR (> 100 mu g/L) significantly inhibited the growth of plants. High sensitivity of the sprouting stage plants to MC-RR treatments as well as the strong inhibitory effects resulting from prolonged irrigation further indicated that this MC-RR growth-inhibition may vary with the duration of irrigation and life stage of the plants. (c) 2007 Published by Elsevier Ltd.
Resumo:
Laboratory and field investigations were conducted to study the food habit of Chinese perch Siniperca chuatsi (Basilewsky) from first feeding through adult stage. Only fish larvae were consumed by Chinese perch larvae (2-21 days from hatching), and the presence of zooplankton did not have any significant effect on their survival rate. The ability of Chinese perch to feed on zooplankton is clearly limited by some innate factor. Instead of gill rakers, Chinese perch larvae have well-developed sharp teeth at the first feeding stage, and are well adapted to the piscivorous feeding habit unique to the larvae of Chinese perch, e.g. they bite and ingest the tails of other fish larvae. At the first feeding stage (2 days from hatching), daily rations were both very low, either in light or complete darkness. Although early-staged Chinese perch larvae (7-17 days from hatching) could feed in complete darkness, their daily rations were always significantly higher in light than in complete darkness. Late-staged Chinese perch larvae (21 days from hatching) were able to feed in complete darkness as well as in light, similar to the case of Chinese perch yearlings. Chinese perch yearlings (total length, 14-16 cm) consumed prey fish only and refused shrimp when visual cues were available (in light), but they consumed both prey when visual cues were not available (in complete darkness), suggesting that prey consumption by Chinese perch yearlings is affected by their sensory modality in predation. Both prey were found in the stomachs of similar-sized Chinese perch (total length, 14-32 cm) from their natural habitat, suggesting that shrimp are consumed by Chinese perch at night. Prey selection of Chinese perch with a length >38 cm, which consumed only fish in the field, appears to be based upon prey size instead of prey type. These results suggest that although environmental factors (e.g. light intensity) affect prey detection by Chinese perch, this fish is anatomically and behaviourally predisposed to prey on live fish from first feeding. This makes it a difficult fish to cultivate using conventional feeds.
Resumo:
The early life-history of Chinese rock carp Procypris rabaudi was investigated during a 56-day rearing period: 318 artificially propagated P. rabaudi larvae were reared throughout metamorphosis in a small-scale recirculation system (345 L water volume, 10 x 18 L rearing tanks, 150 L storage and filter compartment with bioballs, 20-30 larvae L-1) at the Institute of Hydrobiology, Wuhan, Hubei Province, China. The newly hatched larvae had an initial total length of 8.93 +/- 0.35 mm SD (n = 10) at 3 days post-hatch and reached an average total length of 33.29 mm (+/- 1.88 mm SD, n = 10) 56 days after hatching. Length increment averaged 0.45 mm day(-1), resulting in a mean growth of 24.4 mm within the 56-day period. High mortality rates of up to 92% derived from an introduced fungus infection and subsequent treatment stress with malachite green. Our results indicate that Chinese rock carp can be raised successfully from artificially fertilized eggs. We therefore assume this species to be a candidate for commercial aquaculture.
Resumo:
The present research studied the effects of age and dietary protein level on pepsin, trypsin and amylase activity and their mRNA level in Petteobagrus fulvidraco larvae from 3 to 26 days after hatch (DAH). Three DAH larvae were fed three isoenergetic diets, containing 42.8% (CP 43), 47.3% (CP 47) and 52.8% (CP 53) crude protein. Live food (newly hatched Artemia, unenriched) was included as a control. The effects of age on enzyme activity and mRNA were as follows: pepsin and trypsin activity in all treatment groups showed a significant (P < 0.05) increase at the beginning and decrease later although the timing of decrease was not the same among treatment groups and between the digestive enzymes. Pepsin and trypsin mRNA level followed the pattern of their respective enzyme changes. Age significantly affected amylase activity (P < 0.05) while age had no effect on amylase mRNA during the experimental period. The four diets significantly (P < 0.05) affected activity and mRNA level of pepsin and trypsin. Diets did not affect amylase activity or mRNA level. These results suggest that the effects of age on pepsin and trypsin gene expressions are at the transcriptional level. Dietary protein level does affect pepsin and trypsin gene expression in the early life of P. fulvidraco. There were no transcriptional effects on amylase gene expression. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years, much progress has been made in the rearing of fish larvae fed only artificial diets. A preliminary study was made in an attempt to evaluate the effects of live food and formulated diets on survival, growth and body protein content of first-feeding larvae of Plelteobagrus fulvidraco. Three test diets varying in protein level were formulated: Feed 1 containing 45% protein, Feed 2 with 50% protein and Feed 3 with 55% protein. Larvae fed live food (newly hatched Artemia, unenriched) were the control. The experiment started 3 days post-hatch and lasted for 23 days. At the end of the 23-day trial, survival was best in the control group (65.6%) whereby the final body weight and specific growth rate (SGR) were significantly lower than those in the test feed groups. At the same time, coefficients of variation for SGR and final body weight in the test groups were significantly higher than those in the control. Whole body protein content in all treatments showed a similar tendency during development: significantly higher 3 days post-hatch, then decreasing significantly, and then increasing unstatistically 10 days post-hatch. All results suggest that live food is still better for first-feeding larvae of P. fulvidraco, since live food leads to healthier larvae growth.
Resumo:
We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150 cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130 cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50-105 cm), and migrated downstream at night during days 10-16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20-30 cm above the bottom during most days, and during days 12-34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo-larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo-larva migration style of Amur sturgeon is unique among Acipenser yet studied.
Resumo:
Four 1-week trials were conducted to determine the effects of feeding rates on growth performance and body proximate composition of white sturgeon larvae during each of the first 4 weeks after initiation of feeding. Feeding rates (% body weight day(-1)) were 10, 20, 30, 40, 50, and 60 for trial I; 5, 10, 15, 20, 25, and 30 for trial II; and 2.5, 5.0, 7.5, 10.5, 12.5, and 15.0 for trials III and TV Four tanks with 200 larvae each were randomly assigned to each of the six feeding rates. Average initial body weights of the larvae were 49, 94, 180, and 366 mg, respectively, for trials I-IV. The larvae were kept at 19-20 degreesC in circular tanks and fed continuously one of two commercial salmonid soft-moist feeds using automatic feeders. Proximate composition (%) of the feeds for trials I-III and IV were 13.9 and 14.9 moisture, 52.5 and 50.0 crude protein, 10.3 and 12.9 crude fat, and 8.1 and 8.7 ash, respectively. Except mortality in trial I, gain per food fed in trial III, and body ash in all trials, growth performance and body composition were significantly (P<0.05) affected by all feeding rates. Broken line analysis on specific growth rates indicated the optimum feeding rates of white sturgeon larvae to be 26%, 13%, 11%, and 6% body weight day-respectively, for weeks 1, 2, 3, and 4 after initiation of feeding. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The Chinese sturgeon, Acipenser sinensis, is an anadromous protected species that presently only spawns in the Yangtze River. Using laboratory experiments, we examined the behavioral preference of young Chinese sturgeon to physical habitat (water depth, illumination intensity, substrate color, and cover) and monitored their downstream migration. Hatchling free embryos were photopositive, preferred open habitat, and immediately upon hatching, swam far above the bottom using swim-up and drift. Downstream migration peaked on days 0-1, decreased about 50% or more during days 2-7, and ceased by day 8. Days 0-1 migrants were active both day and night, but days 2-7 migrants were most active during the day. After ceasing migration, days 8-11 embryos were photonegative, preferred dark substrate and sought cover. Free embryos developed into larvae and began feeding on day 12, when another shift in behavior occurred-larvae returned to photopositive behavior and preferred white substrate. The selective factor favoring migration of free embryos upon hatching and swimming far above the bottom may be avoidance of benthic predatory fishes. Free embryos, which must rely on yolk energy for activity and growth, only used 19 cumulative temperature degree-days for peak migration compared to 234 degree-days for growth to first feeding larvae, a 1 : 12 ratio of cumulative temperature units. This ratio suggests that sturgeon species with large migratory embryos, like Chinese sturgeon, which require a high level of energy to swim during migration, may migrate only a short time to conserve most yolk energy for growth.
Resumo:
Aspects of the biology of pond-cultured Chinese mitten crab (Eriocheir sinensis H. Milne-Edwards) were studied from June to November 1993. The survival rate of the population was estimated at 18.6%, and there was no significant difference between sexes in growth (t-test, P > 0.05). As the crabs grew from 7.3 to 33.8 mm in mean carapace length, seven molts were observed for the population. The intermolt period ranged from seven to 22 days and lengthened with increased size. Sex ratio at each sampling time did not differ significantly from 1:1 (Chi-square test, P > 0.05). Female crabs presumably required about eleven postlarval molts to reach sexually mature size, which was 34.1 +/- 3.9 (SD) mm. in carapace length in this study.
Resumo:
Hybrid tilapia weighing 4.34 +/- 0.03 g (mean +/- SE) were reared in seawater at 23.8 to 27.0 degrees C for 8 weeks. The control group was fed to satiation twice a day throughout the experiment. The other three groups were deprived of feed for 1, 2, and 4 weeks, respectively, and then fed to satiation during the refeeding period. At the end of the experiment, fish deprived for 1 week had similar body weights to the controls, whereas fish deprived for 2 and 4 weeks had significantly lower body weights than the controls. During the refeeding period, size-adjusted feed intakes and specific growth rates were significantly higher in deprived fish than in the controls, indicating some compensatory responses in these fish. Feed intake and growth rate upon refeeding were higher the longer the duration of deprivation. No significant differences were found in digestibility, feed efficiency or protein and energy retention efficiency between the deprived and control fish during refeeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates during compensatory growth. During refeeding, relative gains in protein, lipid and ash, as proportions of total body weight gain, did not differ significantly among treatment groups. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A settlement inhibition assay using barnacle cyprid larvae, Balanus amphitrite, was developed with Cd2+ and phenol as standard reference toxicants. Mean percentage settlement of cyprid larvae showed a progressive reduction with increasing concentrations of Cd2+ and phenol. A significant reduction in settlement was found when cyprids were exposed to 0.1 mgL(-1) Cd2+ or 10 mgL(-1) phenol. The assay was used to assess the sublethal toxicity of three oil dispersants (Vecom B-1425 GL, Norchem OSD-570 and Corexit 9905) commonly used in Hong Kong waters. Results of this investigation show that the barnacle settlement inhibition assay can be incorporated into the battery of tests currently available for ecotoxicological assessment of marine contaminants. (C) 1997 Elsevier Science Ltd.
Resumo:
The effects of sublethal concentrations of phenol and cadmium on the phototactic responses of the stage II nauplii of the barnacle Balanus amphitrite were investigated. Increased toxicant concentrations caused a reduction in phototactic responses. Balanus amphitrite nauplii exposed to nominal phenol concentrations of 100 ppm and higher for 1-12 h failed to exhibit phototactic responses, while longer exposure times of 24 and 48 h reduced the lowest observable effect concentration (LOECs) to 80 and 60 ppm, respectively. For cadmium, the LOECs, based on nominal concentrations, for B. amphitrite following 1, 6, 12, 24, and 48 h exposures were 20, 4.5, 4.0, 1, and 0.75 ppm, respectively. The LOECs can be significantly reduced by increasing the duration of exposure to the toxicants. A good relationship exists between the phototactic response and toxicant concentration as well as exposure time. Results of this study indicate that the toxicant-induced reduction in phototactic responses of barnacle larvae can be used in a sensitive, rapid screening test for ecotoxicological assessments. (C) 1997 by John Wiley & Sons, Inc.
Resumo:
Feeding intensities (number of bites per minute) were recorded each hour over a 24-h diel cycle for young grass carp fed three diets. The grass carp did not show distinct meals. Grass carp receiving plant diets (duckweed or elodea) fed almost continuously throughout the 24 h, while fish fed the animal diet (tubificids) ceased feeding or had very low feeding intensities for about a quarter of the diel cycle. The average feeding intensity in fish fed duckweed was three times higher than that in fish fed elodea and tubificids. Average dry matter intake per bite was much higher in fish fed the animal diet than in those fed the plant diets. In most individuals, there was no significant difference in feeding intensity between daytime and nighttime.