943 resultados para Kingston
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
This project is about Fast and Female, a community-based girls’ sport organization, that focuses on empowering girls through sport. In this thesis I produce a discourse analysis from interviews with six expert sportswomen and a textual analysis of the organization’s online content – including its social media pages. I ground my analysis in poststructural theory as explained by Chris Weedon (1997) and in literature that helps contextualize and better define empowerment (Collins, 2000; Cruikshank, 1999; Hains, 2012; Sharma, 2008; Simon, 1994) and neoliberalism (Silk & Andrews, 2012). My analysis in this project suggests that Fast and Female develops a community through online and in-person interaction. This community is focused on girls’ sport and empowerment, but, as the organization is situated in a neoliberal context, organizers must take extra consideration in order for the organization to develop a girls’ sport culture that is truly representative of the desires and needs of the participants rather than implicit neoliberal values. It is important to note that Fast and Female does not identify as a feminist organization. Through this thesis I argue that Fast and Female teaches girls that sport is empowering – but, while the organization draws on “empowerment,” a term often used by feminists, it promotes a notion of empowerment that teaches female athletes how to exist within current mainstream and sporting cultures, rather than encouraging them to be empowered female citizens who learn to question and challenge social inequity. I conclude my thesis with suggestions for Fast and Female to encourage empowerment in spite of the current neoliberal situation. I also offer a goal-setting workbook that I developed to encourage girls to set goals while thinking about their communities rather than just themselves.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.
Resumo:
The Journal has been Queen's main student newspaper since it was founded in 1873. It appears twice a week on campus with a mix of news, sports, and entertainment stories, editorials, letters to the editor, and photographs. The paper is students' most important source of news and general information and has been a training ground for scores of Canadian journalists.
Resumo:
Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.
Resumo:
Most essay rating research in language assessment has examined human raters’ essay rating as a cognitive process, thus overlooking or oversimplifying the interaction between raters and sociocultural contexts. Given that raters are social beings, their practices have social meanings and consequences. Hence it is important to situate essay rating within its sociocultural context for a more meaningful understanding. Drawing on Engeström’s (1987, 2001) cultural-historical activity theory (CHAT) framework with a sociocultural perspective, this study reconceptualized essay rating as a socially mediated activity with both cognitive (individual raters’ goal-directed decision-making actions) and social layers (raters’ collective object-oriented essay rating activity at related settings). In particular, this study explored raters’ essay rating at one provincial rating centre in China within the context of a high-stakes university entrance examination, the National Matriculation English Test (NMET). This study adopted a multiple-method multiple-perspective qualitative case study design. Think-aloud protocols, stimulated recalls, interviews, and documents served as the data sources. This investigation involved 25 participants at two settings (rating centre and high schools), including rating centre directors, team leaders, NMET essay raters who were high school teachers, and school principals and teaching colleagues of these essay raters. Data were analyzed using Strauss and Corbin’s (1990) open and axial coding techniques, and CHAT for data integration. The findings revealed the interaction between raters and the NMET sociocultural context. Such interaction can be understood through a surface structure (cognitive layer) and a deep structure (social layer) concerning how raters assessed NMET essays, where the surface structure reflected the “what” and the deep structure explained the “how” and “why” in raters’ decision-making. This study highlighted the roles of goals and rules in rater decision-making, rating tensions and raters’ solutions, and the relationship between essay rating and teaching. This study highlights the value of a sociocultural view to essay rating research, demonstrates CHAT as a sociocultural approach to investigate essay rating, and proposes a direction for future washback research on the effect of essay rating. This study also provides support for NMET rating practices that can potentially bring positive washback to English teaching in Chinese high schools.
Resumo:
This thesis reports on 17O (I = 5/2) and 59Co (I = 7/2) quadrupole central transition (QCT) NMR studies of three classes of biologically important molecules: glucose, nicotinamide and Vitamin B12 derivatives. Extensive QCT NMR experiments were performed over a wide range of molecular motion by changing solvent viscosity and temperature. 17O-labels were introduced at the 5- and 6-positions respectively: D-[5-17O]-glucose and D-[6-17O]-glucose following the literature method. QCT NMR greatly increased the molecular size limit obtained by ordinary solution NMR. It requires much lower temperatures to get the optimal spectral resolution, which are preferable for biological molecules. In addition, quadrupolar product parameter (PQ) and shielding anisotropy product parameter (PSA) were obtained for hydroxide group and amide group for the first time. For conventional NMR studies of quadrupolar nuclei, only PQ is accessible while QCT NMR obtained both PQ and PSA simultaneously. Our experiments also suggest the resolution of QCT NMR can be even better than that obtained by conventional NMR. We observed for the first time that the second-order quadrupolar interaction becomes a dominant relaxation mechanism under ultraslow motion. All these observations suggest that QCT NMR can become a standard technique for studying quadrupolar nuclei in solution.