901 resultados para Kinematic range


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers’ extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of pulse compression techniques to improve the sensitivity of meteorological radars has become increasingly common in recent years. An unavoidable side-effect of such techniques is the formation of ‘range sidelobes’ which lead to spreading of information across several range gates. These artefacts are particularly troublesome in regions where there is a sharp gradient in the power backscattered to the antenna as a function of range. In this article we present a simple method for identifying and correcting range sidelobe artefacts. We make use of the fact that meteorological targets produce an echo which fluctuates at random, and that this echo, like a fingerprint, is unique to each range gate. By cross-correlating the echo time series from pairs of gates therefore we can identify whether information from one gate has spread into another, and hence flag regions of contamination. In addition we show that the correlation coefficients contain quantitative information about the fraction of power leaked from one range gate to another, and we propose a simple algorithm to correct the corrupted reflectivity profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF’s medium-range ensemble forecasts of precipitation over the period 2008/01/01-2012/09/30 on a selected mid-latitude large scale river basin, the Huai river basin (ca. 270,000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With advances in technology, terahertz imaging and spectroscopy are beginning to move out of the laboratory and find applications in areas as diverse as security screening, medicine, art conservation and field archaeology. Nevertheless, there is still a need to improve upon the performance of existing terahertz systems to achieve greater compactness and robustness, enhanced spatial resolution, more rapid data acquisition times and operation at greater standoff distances. This chapter will review recent technological developments in this direction that make use of nanostructures in the generation, detection and manipulation of terahertz radiation. The chapter will also explain how terahertz spectroscopy can be used as a tool to characterize the ultrafast carrier dynamics of nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball’s bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.