812 resultados para Islet amyloid
Resumo:
Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.
Resumo:
It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.
Resumo:
Successful pancreas transplantation in type I diabetic patients restores normal fasting glucose levels and biphasic insulin responses to glucose. However, virtually no data from pancreas recipients are available relative to other islet hormonal responses or hormonal counterregulation of hypoglycemia. Consequently, glucose, glucagon, catecholamine, and pancreatic polypeptide responses to insulin-induced hypoglycemia and to stimulation with arginine and secretin were examined in 38 diabetic pancreas recipients, 54 type I diabetic nonrecipients, and 26 nondiabetic normal control subjects. Glucose recovery after insulin-induced hypoglycemia in pancreas recipients was significantly improved. Basal glucagon levels were significantly higher in recipients compared with nonrecipients and normal subjects. Glucagon responses to insulin-induced hypoglycemia were significantly greater in the pancreas recipients compared with nonrecipients and similar to that observed in control subjects. Glucagon responses to intravenous arginine were significantly greater in pancreas recipients than that observed in both the nonrecipients and normal subjects. No differences were observed in epinephrine responses during insulin-induced hypoglycemia. No differences in pancreatic polypeptide responses to hypoglycemia were observed when comparing the recipient and nonrecipient groups, both of which were less than that observed in the control subjects. Our data demonstrate significant improvement in glucose recovery after hypoglycemia which was associated with improved glucagon secretion in type I diabetic recipients of pancreas transplantation.
Resumo:
HIT cells have been widely used to study synthesis and secretion of insulin. It has been assumed that this cell line secretes no other islet hormones. To ascertain whether HIT cells synthesize, secrete, and degrade glucagon, we examined cell extracts for this peptide and compared secretion and degradation of glucagon and insulin during stimulation of the cells by arginine. Glucagon levels in acid extracts of HIT cells were found to be 0.72 +/- 0.15 pmol/mg protein. Both glucagon and insulin were maximally stimulated in a glucagon/insulin molar ratio of 0.029 by arginine concentrations of 25-50 nM, and the concentration of arginine that provided half-maximum responses for both hormones was approximately 3 mM. Diminution of arginine-induced glucagon secretion was caused by somatostatin, a physiological inhibitor of pancreatic islet alpha-cell function. HPLC was used to authenticate the glucagon levels stimulated by arginine for 60 min and measured by RIA. Thirty-six percent of immunoreactive glucagon was found in the fractions representing authentic glucagon, whereas the remaining 64% eluted earlier. Experiments examining the fate of radiolabeled glucagon exposed to HIT cells revealed time-dependent degradation of the radioisotope to earlier eluting forms, which accounted for approximately 50% of the radioactivity by 60 min and was complete by 18 h, indicating that the early peak detected by RIA represented a metabolite of glucagon. Radioisotopic insulin was degraded more slowly with an apparent half-life of approximately 36 h. We conclude that HIT cells are not only able to synthesize, secrete, and degrade insulin, but also much smaller amounts of glucagon.
Resumo:
OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.
Resumo:
CONTEXT: The success of pancreatic islet transplantation depends largely on the capacity of the islet graft to survive the initial phase immediately after transplantation until revascularization is completed. Endothelin-1 (ET-1) is a strong vasoconstrictor which has been involved in solid organ graft failure but is also known to be a potent mitogenic/anti-apoptotic factor which could also potentially enhance the survival of the transplanted islets. OBJECTIVE: Characterization of the endothelin system with regard to a potential endothelin agonist/antagonist treatment. DESIGN: Regulated expression of the endothelin system in human and rat pancreatic islets and beta-cell lines was assessed by means of immunohistochemistry, competition binding studies, western blot, RT-PCR, real-time PCR and transplant studies. RESULTS: ET-1, ETA- and ETB-receptor immunoreactivity was identified in the endocrine cells of human and rat pancreatic islets. The corresponding mRNA was detectable in rat beta-cell lines and isolated rat and human pancreatic islets. Competition binding studies on rat islets revealed binding sites for both receptor types. ET-1 stimulated the phosphorylation of mitogen-activated protein kinase, which was prevented by ETA- and ETB-receptor antagonists. After exposure to hypoxia equal to post-transplant environment oxygen tension, mRNA levels of ET-1 and ETB-receptor of human islets were robustly induced whereas ETA-receptor mRNA did not show significant changes. Immunostaining signals for ET-1 and ETA-receptor of transplanted rat islets were markedly decreased when compared to native pancreatic sections. CONCLUSIONS: In pancreatic islets, ET-1 and its receptors are differentially expressed by hypoxia and after transplantation. Our results provide the biological basis for the study of the potential use of endothelin agonists/antagonists to improve islet transplantation outcome.
Resumo:
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.
Resumo:
BACKGROUND: Splenic involvement in amyloidosis is rather frequent (5-10%). An atraumatic rupture of the affected spleen is however an extremely rare event. We report on a patient with undiagnosed amyloidosis who underwent emergency splenectomy for atraumatic splenic rupture. METHODS: Review of the literature and identification of 31 patients, including our own case report, with atraumatic splenic rupture in amyloidosis. Analysis of the clinical presentation, the surgical management, the nomenclature and definition of predisposing factors of splenic rupture. RESULTS: We identified 15 women and 16 men (mean age 53.3 +/- 12.4 years; median 52, range: 27-82 years) with an atraumatic splenic rupture. Easy skin bruisability and factor X deficiency were detected in four (13%) and five patients (16%), respectively. The diagnosis of splenic rupture was made either by computed tomography (n = 12), ultrasound (n = 5), exploratory laparotomy (n = 9) or autopsy (n = 4). All patients underwent surgery (n = 27) or autopsy (n = 4). Amyloidosis was previously diagnosed in nine patients (29%). In the remaining 22 patients (71%), the atraumatic splenic rupture represented the initial manifestation of amyloidosis. Twenty-five patients (81%) suffered from primary (AL) and four patients (13%) from secondary amyloidosis (AA). In two patients, the type of amyloidosis was not specified. A moderate splenomegaly was a common feature (68%) and the characteristic intraoperative finding was an extended subcapsular hematoma with a limited parenchymal laceration (65%). In five patients with known amyloidosis, the atraumatic splenic rupture was closely associated with autologous stem-cell transplantation (ASCT) (16%). Three patients were suffering from multiple myeloma (10%). A biopsy-proven amyloidotic liver involvement was present in 14 patients (45%), which lead to atraumatic liver rupture in two patients. The splenic rupture related 30-day mortality was 26% (8/31). CONCLUSIONS: Atraumatic splenic rupture in amyloidosis is associated with a high 30-day mortality. It occurs predominantly in patients with previously undiagnosed amyloidosis. A moderate splenomegaly, coagulation abnormalities (easy skin bruisability, factor X deficiency) and treatment of amyloidosis with ASCT are considered predisposing factors for an atraumatic splenic rupture.
Resumo:
Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.
Resumo:
Objective: To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. Design: The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. Methods: Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1–42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. Results: In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. Conclusion: Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.
Resumo:
The human insulin gene enhancer-binding protein islet-1 (ISL1) is a transcription factor involved in the differentiation of the neuroendocrine pancreatic cells. Recent studies identified ISL1 as a marker for pancreatic well-differentiated neuroendocrine neoplasms. However, little is known about ISL1 expression in pancreatic poorly differentiated and in extrapancreatic well and poorly differentiated neuroendocrine neoplasms. We studied the immunohistochemical expression of ISL1 in 124 neuroendocrine neoplasms. Among pancreatic neuroendocrine neoplasms, 12/13 with poor differentiation were negative, whereas 5/7 with good differentiation but a Ki67 >20% were positive. In extrapancreatic neuroendocrine neoplasms, strong positivity was found in Merkel cell carcinomas (25/25), pulmonary small cell neuroendocrine carcinomas (21/23), medullary thyroid carcinomas (9/9), paragangliomas/pheochromocytomas (6/6), adrenal neuroblastomas (8/8) and head and neck neuroendocrine carcinomas (4/5), whereas no or only weak staining was recorded in pulmonary carcinoids (3/15), olfactory neuroblastomas (1/4) and basaloid head and neck squamous cell carcinomas (0/15). ISL1 stained the neuroendocrine carcinoma component of 5/8 composite carcinomas and also normal neuroendocrine cells in the thyroid, adrenal medulla, stomach and colorectum. Poorly differentiated neuroendocrine neoplasms, regardless of their ISL1 expression, were usually TP53 positive. Our results show the almost ubiquitous expression of ISL1 in extrapancreatic poorly differentiated neuroendocrine neoplasms and neuroblastic malignancies and its common loss in pancreatic poorly differentiated neuroendocrine neoplasms. These findings modify the role of ISL1 as a marker for pancreatic neuroendocrine neoplasms and suggest that ISL1 has a broader involvement in differentiation and growth of neuroendocrine neoplasms than has so far been assumed.
Resumo:
BACKGROUND Small benign insulinomas are hard to localise, leading to difficulties in planning of surgical interventions. We aimed to prospectively assess the insulinoma detection rate of single-photon emission CT in combination with CT (SPECT/CT) with a glucagon-like peptide-1 receptor avid radiotracer, and compare detection rates with conventional CT/MRI techniques. METHODS In our prospective imaging study, we enrolled adults aged 25-81 years at centres in Germany, Switzerland, and the UK. Eligible patients had proven clinical and biochemical endogenous hyperinsulinaemic hypoglycaemia and no evidence for metastatic disease on conventional imaging. CT/MRI imaging was done at referring centres according to standard protocols. At three tertiary nuclear medicine centres, we used whole body planar images and SPECT/CT of the abdomen up to 168 h after injection of (111)In-[Lys40(Ahx-DTPA-(111)In)NH2]-exendin-4 ((111)In-DTPA-exendin-4) to identify insulinomas. Consenting patients underwent surgery and imaging findings were confirmed histologically. FINDINGS Between Oct 1, 2008, and Dec 31, 2011, we recruited 30 patients. All patients underwent (111)In-DTPA-exendin-4 imaging, 25 patients underwent surgery (with histological analysis), and 27 patients were assessed with CT/MRI. (111)In-DTPA-exendin-4 SPECT/CT correctly detected 19 insulinomas and four additional positive lesions (two islet-cell hyperplasia and two uncharacterised lesions) resulting in a positive predictive value of 83% (95% CI 62-94). One true negative (islet-cell hyperplasia) and one false negative (malignant insulinoma) result was identified in separate patients by (111)In-DTPA-exendin-4 SPECT/CT. Seven patients (23%) were referred to surgery on the basis of (111)In-DTPA-exendin-4 imaging alone. For 23 assessable patients, (111)In-DTPA-exendin-4 SPECT/CT had a higher sensitivity (95% [95% CI 74-100]) than did CT/MRI (47% [27-68]; p=0·011). INTERPRETATION (111)In-DTPA-exendin-4 SPECT/CT could provide a good second-line imaging strategy for patients with negative results on initial imaging with CT/MRI. FUNDING Oncosuisse, the Swiss National Science Foundation, and UK Department of Health.
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.
Resumo:
Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^