949 resultados para Intertemporal substitution
Resumo:
An efficient strategy for the contruction of spiro[4.5] decanes is described and involves a bridgehead substitution of a methoxyl group by a methyl group followed by an oxidative cleavage of the tricyclo[5.2.2.0(1,5)] undecane 25 to produce the spiro[4.5] decanes 31 & 32 which are intermediates in the synthesis of acorone. A novel one-pot conversion of alpha-methoxy carboxylic acid to alpha-methyl carboxylic acid is described.
Resumo:
Substitutional self-assembly of thiol and selenol SAMs from a lying-down phase of butanedithiol (C4DT) (SAM) were investigated using thiols, disulfide, and diselenide molecules. The intent was to address the question if formation of a lying-down dithiol phase is an impediment to formation of standing-up dithiol phases as it has been assumed. It is demonstrated that this is not the case, and the C4DT SAM, where both the sulfur atoms are chemisorbed on gold, is removed and replaced in all cases. Differences in substitution kinetics are observed.
Resumo:
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
A series of novel, microporous polymer networks (MPNs) have been generated in a simple, acid catalysed Friedel-Crafts-type self-condensation of A(2)B(2)- and A(2)B(4)-type fluorenone monomers. Two A2B4-type monomers with 2,7-bis(N, N-diphenylamino) A or 2,7-bis [4-(N, N-diphenylamino) phenyl] D substitution of the fluorenone cores lead to MPNs with high S(BET) surface areas of up to 1400 m(2) g(-1). Two MPNs made of binary monomer mixtures showed the highest Brunauer-Emmett-Teller (BET) surface areas S(BET) of our series (SBET of up to 1800 m(2) g(-1)) after washing the powdery samples with supercritical carbon dioxide. Total pore volumes of up to 1.6 cm(3) g(-1) have been detected. It is observed that the substitution pattern of the monomers is strongly influencing the resulting physicochemical properties of the microporous polymer networks (MPNs).
Resumo:
To explore the anticancer effect associated with the piperidine framework, several (substituted phenyl) {4-[3-(piperidin-4-yl)propyl]piperidin-1-yl} methanone derivatives 3(a-i) were synthesized. Variation in the functional group at N-terminal of the piperidine led to a set of compounds bearing amide moiety. Their chemical structures were confirmed by (1)H NMR, IR and mass spectra analysis. Among these, compounds 3a, 3d and 3e were endowed with antiproliferative activity. The most active compound among this series was 3a with nitro and fluoro substitution on the phenyl ring of aryl carboxamide moiety, which inhibited the growth of human leukemia cells (K562 and Reh) at low concentration. Comparison with other derivative (3h) results shown by LDH assay, cell cycle analysis and DNA fragmentation suggested that 3a is more potent to induce apoptosis.
Resumo:
Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) and Ce(0.67)Fe(0.33)O(2-delta) have been synthesized by a new low temperature sonochemical method using diethylenetriamine as a complexing agent. Due to the substitution of Fe and Pt ions in CeO(2), lattice oxygen is activated in Ce(0.67)Fe(0.33)O(2-delta) and Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). Hydrogen uptake studies show strong reduction peaks at 125 C in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) against a hydrogen uptake peak at 420 degrees C in Ce(0.67)Fe(0.33)O(2-delta). Fe substituted ceria, Ce(0.67)Fe(0.33)O(2-delta) itself acts as a catalyst for CO oxidation and water gas shift (WGS) reactions at moderate temperatures. The rate of CO conversion in WGS with Pt free Ce(0.65)Fe(0.33)O(2-delta) is 2.8 mu mol g(-1) s(-1) at 450 C and with Pt substituted Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) is 4.05 mu mol g(-1) s(-1) at 275 degrees C. Due to the synergistic interaction of the Pt ion with Ce and Fe ions in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta), the catalyst showed much higher activity for CO oxidation and WGS reactions compared to Ce(0.67)Fe(0.33)O(2-delta). A reverse WGS reaction does not occur over Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). The catalyst also does not deactivate even when operated for a long time. Nearly 100% conversion of CO to CO(2) with 100% H(2) selectivity is observed in WGS reactions even up to 550 degrees C. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A modified solution combustion technique was successfully used to synthesize sub-10 nm crystallites of hybrid CeO(2)-Al(2)O(3)-CeAlO(3). The fuel in the solution combustion was tuned to obtain mixed oxides and solid solutions of the compound. The compounds were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. XRD and TEM analysis showed the substitution of Al(3+) ions in the CeO(2) matrix when a combination of glycine, urea, hexamine and oxalyl dihydrazide was used as fuel for the synthesis. The compounds showed high activity for CO oxidation and the activity of the compounds was dependent upon the composition of the oxide.
Resumo:
Phase relations in the systems SrO-Y2O3-CuO-O2 and CaO-Y2O3-CuO-O2 at 1173 K were established by equilibrating different compositions in flowing oxygen gas at a pressure of 1.01 × 105 Pa. The quenched samples were examined by optical microscopy, X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), and electron spin resonance (ESR). In the system SrO-Y2O3-CuO-O2, except for the limited substitution of Y3+ for Sr2+ ions in the ternary oxide Sr14Cu24O41, no new quaternary phase was found to be stable. The compositions corresponding to the solid solution Sr14−xYxCu24O41 and the compound SrCuO2+δ lie above the plane containing SrO, Y2O3, and CuO,displaced towards the oxygen apex. However, in the system CaO-Y203-CuO-O2 at 1173 K, all the condensed phases lie on the plane containing CaO, Y203, and CuO, and a new quaternary oxide YCa2Cu306.s is present. The quaternary phase has a composition that lies at the center of the nonstoichiometric field of the analogous phase YBa2Cu307_~ in the BaO-Y203-CuO-O2 system. The compound YCa2Cu306.s has the tetragonal structure and does not become superconducting at low temperature. Surprisingly, phase relations in the three systems CaO-Y203-CuO-O2, SrO-Y203-CuO-O2, and BaO-Y203-CuO-O2 are found to be quite different.
Resumo:
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.
Resumo:
Phase-singular solids of the composition, (Mg1−(x+y) Cax Lay)(Ti1−yAly)O3 (x = 0 to 0.88; y = 0.05 to 0.35) having the cubic perovskite-type structure were prepared by the substitution of La3+ and Al3+ in equivalent quantities which brought about complete miscibility between MgTiO3 and CaTiO3. These ceramics showed relative permittivities of 16.5 to 50 (at 6 GHz) with increasing Ca content, high Q values of 10 000 to 30 000 and retained near-zero temperature coefficients in permittivity at optimum y values. Their dielectric characteristics are better accountable in terms of the positional disorder rather than the tolerance factor of perovskite structure.
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
We have synthesized 5-7 nm size, highly crystalline TiO2 which absorbs radiation in the visible region of solar spectrum. The material shows higher photocatalytic activity both in UV and visible region of the solar radiation compared to commercial Degussa P25 TiO2. Transition metal ion substitution for Ti4+ creates mid-gap, states which act as recombination centers for electron-hole induced by photons thus reducing photocatalytic activity. However, Pt, Pd and Cu ion substituted TiO2 are excellent CO oxidation and NO reduction catalysts at temperatures less than 100 degrees C.
Resumo:
Obestatin is a more recently discovered hormone that is encoded by the ghrelin gene and produced in the stomach and gut. We report NMR analysis on synthetic Obestatin (OB23), a 23 residue peptide, along with three overlapping fragments of the same in methanol solvent as a first step towards structure activity relationship. Selective substitutions on the promising N-terminal and middle fragments of obestatin have been carried out in order to improve the efficacy and potency. In the N-terminal fragment two peptides were obtained by the replacement of Gly (8) with a-aminoisobutyric acid (Aib, U) and Phe (F5) with Cyclohexylalanine (Cha). In case of the middle fragment both Gly (3) and Gly (8) were replaced with Aib residues. The rationale being, these unusual amino acids could provide protection from immediate degradation and aid structure stabilization. Our previous studies showed that the N-terminal and the middle fragment were unstructured and hence this substitution would directly evaluate the effect of structure on the activity of these fragment analogs. Detailed NMR analysis clearly demonstrates formation of helical secondary structure in all the peptide analogues and provides justification for relative activities reported by our group previously (Nagaraj et al. 2009).
Resumo:
IDH1 mutations are frequent genetic alterations in low-grade diffuse gliomas and secondary glioblastoma (GBM). To validate mutation frequency, IDH1 gene at codon 132 was sequenced in 74 diffusely infiltrating astrocytomas: diffuse astrocytoma (DA; World Health Organization WHO] grade II), anaplastic astrocytoma (AA; WHO grade III), and GBM (WHO grade IV). All cases were immunostained with IDH1-R132H monoclonal antibody. Mutational status was correlated with mutant protein expression, patient age, duration of symptoms, and prognosis of patients with GBM. We detected 31 (41.9%) heterozygous IDH1 mutations resulting in arginine-to-histidine substitution (R132H;CGT-CAT). All 12 DAs (100%), 13 of 14 AAs (92.9%), and 6 of 48 GBMs (12.5%) (5/6 83.3%] secondary, and 1/42 2.4%] primary) harbored IDH1 mutations. The correlation between mutational status and protein expression was significant (P < .001). IDH1 mutation status, though not associated with prognosis of patients with GBM, showed significant association with younger age and longer duration of symptoms in the whole cohort (P < .001). Our study validates IDH1 mutant protein expression across various grades of astrocytoma, and demonstrates a high incidence of IDH1 mutations in DA, AA, and secondary GBM.