973 resultados para Interstitial lung disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One alternative approach for the treatment of lung cancer might be the activation of the immune system using vaccination strategies. However, most of clinical vaccination trials for lung cancer did not reach their primary end points, suggesting that lung cancer is of low immunogenicity. To provide additional experimental information about this important issue, we investigated which type of immune cells contributes to the protection from lung cancer development. Therefore, A/J mice induced for lung adenomas/adenocarcinomas by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were depleted of CD4(+) or CD8(+) T cells, CD11b(+) macrophages, Gr-1(+) neutrophils and asialo GM1(+) natural killer (NK) cells. Subsequent analysis of tumour growth showed an increase in tumour number only in mice depleted of NK cells. Further asking by which mechanism NK cells suppressed tumour development, we neutralized several death ligands of the tumour necrosis factor (TNF) family known to be involved in NK cell-mediated cytotoxicity. However, neither depletion of TNF-α, TNF-related apoptosis-inducing ligand, TNF-like weak inducer of apoptosis or FasL alone nor in combination induced an augmentation of tumour burden. To show whether an alternative cell death pathway is involved, we next generated A/J mice deficient for perforin. After challenging with NNK, mice deficient for perforin showed an increase in tumour number and volume compared to wild-type A/J mice. In summary, our data suggest that NK cells and perforin-mediated cytolysis are critically involved in the protection from lung cancer giving promise for further immunotherapeutic strategies for this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptospiral pulmonary haemorrhage syndrome (LPHS) is a severe form of leptospirosis. Pathogenic mechanisms are poorly understood. Lung tissues from 26 dogs with LPHS, 5 dogs with pulmonary haemorrhage due to other causes and 6 healthy lungs were labelled for IgG (n=26), IgM (n=25) and leptospiral antigens (n=26). Three general staining patterns for IgG/IgM were observed in lungs of dogs with LPHS with most tissues showing more than one staining pattern: (1) alveolar septal wall staining, (2) staining favouring alveolar surfaces and (3) staining of intra-alveolar fluid. Healthy control lung showed no staining, whereas haemorrhagic lung from dogs not infected with Leptospira showed staining of intra-alveolar fluid and occasionally alveolar septa. Leptospiral antigens were not detected. We conclude that deposition of IgG/IgM is demonstrable in the majority of canine lungs with naturally occurring LPHS, similar to what has been described in other species. Our findings suggest involvement of the host humoral immunity in the pathogenesis of LPHS and provide further evidence to support the dog as a natural disease model for human LPHS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND In a phase 3, randomised, non-inferiority trial, accelerated partial breast irradiation (APBI) for patients with stage 0, I, and IIA breast cancer who underwent breast-conserving treatment was compared with whole-breast irradiation. Here, we present 5-year follow-up results. METHODS We did a phase 3, randomised, non-inferiority trial at 16 hospitals and medical centres in seven European countries. 1184 patients with low-risk invasive and ductal carcinoma in situ treated with breast-conserving surgery were centrally randomised to either whole-breast irradiation or APBI using multicatheter brachytherapy. The primary endpoint was local recurrence. Analysis was done according to treatment received. This trial is registered with ClinicalTrials.gov, number NCT00402519. FINDINGS Between April 20, 2004, and July 30, 2009, 551 patients had whole-breast irradiation with tumour-bed boost and 633 patients received APBI using interstitial multicatheter brachytherapy. At 5-year follow-up, nine patients treated with APBI and five patients receiving whole-breast irradiation had a local recurrence; the cumulative incidence of local recurrence was 1·44% (95% CI 0·51-2·38) with APBI and 0·92% (0·12-1·73) with whole-breast irradiation (difference 0·52%, 95% CI -0·72 to 1·75; p=0·42). No grade 4 late side-effects were reported. The 5-year risk of grade 2-3 late side-effects to the skin was 3·2% with APBI versus 5·7% with whole-breast irradiation (p=0·08), and 5-year risk of grade 2-3 subcutaneous tissue late side-effects was 7·6% versus 6·3% (p=0·53). The risk of severe (grade 3) fibrosis at 5 years was 0·2% with whole-breast irradiation and 0% with APBI (p=0·46). INTERPRETATION The difference between treatments was below the relevance margin of 3 percentage points. Therefore, adjuvant APBI using multicatheter brachytherapy after breast-conserving surgery in patients with early breast cancer is not inferior to adjuvant whole-breast irradiation with respect to 5-year local control, disease-free survival, and overall survival. FUNDING German Cancer Aid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most COPD patients are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or following smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared to air-exposed mice when infected 16-24 hours post-exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to comparable levels as those of control mice suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production prior to infection in mice exposed to cigarette smoke relative to mice never exposed or following smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and GM-CSF in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using serpinb1a-deficient mice with reduced neutrophil numbers and treatment with G-CSF showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE The use of 6-minute-walk distance (6MWD) as an indicator of exercise capacity to predict postoperative survival in lung transplantation has not previously been well studied. OBJECTIVES To evaluate the association between 6MWD and postoperative survival following lung transplantation. METHODS Adult, first time, lung-only transplantations per the United Network for Organ Sharing database from May 2005 to December 2011 were analyzed. Kaplan-Meier methods and Cox proportional hazards modeling were used to determine the association between preoperative 6MWD and post-transplant survival after adjusting for potential confounders. A receiver operating characteristic curve was used to determine the 6MWD value that provided maximal separation in 1-year mortality. A subanalysis was performed to assess the association between 6MWD and post-transplant survival by disease category. MEASUREMENTS AND MAIN RESULTS A total of 9,526 patients were included for analysis. The median 6MWD was 787 ft (25th-75th percentiles = 450-1,082 ft). Increasing 6MWD was associated with significantly lower overall hazard of death (P < 0.001). Continuous increase in walk distance through 1,200-1,400 ft conferred an incremental survival advantage. Although 6MWD strongly correlated with survival, the impact of a single dichotomous value to predict outcomes was limited. All disease categories demonstrated significantly longer survival with increasing 6MWD (P ≤ 0.009) except pulmonary vascular disease (P = 0.74); however, the low volume in this category (n = 312; 3.3%) may limit the ability to detect an association. CONCLUSIONS 6MWD is significantly associated with post-transplant survival and is best incorporated into transplant evaluations on a continuous basis given limited ability of a single, dichotomous value to predict outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticancer therapies currently used in the clinic often can neither eradicate the tumor nor prevent disease recurrence due to tumor resistance. In this study, we showed that chemoresistance to pemetrexed, a multi-target anti-folate (MTA) chemotherapeutic agent for non-small cell lung cancer (NSCLC), is associated with a stem cell-like phenotype characterized by an enriched stem cell gene signature, augmented aldehyde dehydrogenase activity and greater clonogenic potential. Mechanistically, chemoresistance to MTA requires activation of epithelial-to-mesenchymal transition (EMT) pathway in that an experimentally induced EMT per se promotes chemoresistance in NSCLC and inhibition of EMT signaling by kaempferol renders the otherwise chemoresistant cancer cells susceptible to MTA. Relevant to the clinical setting, human primary NSCLC cells with an elevated EMT signaling feature a significantly enhanced potential to resist MTA, whereas concomitant administration of kaempferol abrogates MTA chemoresistance, regardless of whether it is due to an intrinsic or induced activation of the EMT pathway. Collectively, our findings reveal that a bona fide activation of EMT pathway is required and sufficient for chemoresistance to MTA and that kaempferol potently regresses this chemotherapy refractory phenotype, highlighting the potential of EMT pathway inhibition to enhance chemotherapeutic response of lung cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that 50% of all lung cancer patients continue to smoke after diagnosis. Many of these lung cancer patients who are current smokers often experience tremendous guilt and responsibility for their disease, and feel it might be too late for them to quit smoking. In addition, many oncologists may be heard to say that it is 'too late', 'it doesn't matter', 'it is too difficult', 'it is too stressful' for their patients to stop smoking, or they never identify the smoking status of the patient. Many oncologists feel unprepared to address smoking cessation as part of their clinical practice. In reality, physicians can have tremendous effects on motivating patients, particularly when patients are initially being diagnosed with cancer. More information is needed to convince patients to quit smoking and to encourage clinicians to assist patients with their smoking cessation. ^ In this current study, smoking status at time of lung cancer diagnosis was assessed to examine its impact on complications and survival, after exploring the reliability of smoking data that is self-reported. Logistic Regression was used to determine the risks of smoking prior to lung resection. In addition, survival analysis was performed to examine the impact of smoking on survival. ^ The reliability of how patients report their smoking status was high, but there was some discordance between current smokers and recent quitters. In addition, we found that cigarette pack-year history and duration of smoking cessation were directly related to the rate of a pulmonary complication. In regards to survival, we found that current smoking at time of lung cancer diagnosis was an independent predictor of early stage lung cancer. This evidence supports the idea that it is "never too late" for patients to quit smoking and health care providers should incorporate smoking status regularly into their clinical practice.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^